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Probability Mass Function (pmf) of a Discrete r.v.

The pmf assigns a probability to each possible value of a discrete r.v.:

(pmf of a Discrete Random Variable)

Let X be a discrete random variable.
Then, its pmf, denoted as px(k), is defined as follows:

px(k) :=P(X = k) Vk € Supp(X)

Corollary

(pomf Axioms)

Let X be a discrete random variable. Then, its pmf px (k) satisfies
Non-negativity on its Support: px(k) >0 Vk € Supp(X)
Universal Sum of Unity: > px(k) =1

ke Supp(X)
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: Q2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA, FFF}

W = If 3" seat in car is available (1 = Yes, 0 = No)

X = If car has any available seats (1 = Yes, 0 = No)

Y = Number of available seats in car

Z = Difference in # of available and occupied seats

Let random variables

W(AAA) =1 X(AAA) =1 Y(AAA) =3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF)=1 Y(AAF)=2 Z(AAF)=2-1 = 1
W(AFA) =1 X(AFA)=1 Y(AFA)=2 Z(AFA)=2-1 = 1
Then: WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -I
" OW(FAA) =1 X(FAA)=1 Y(FAA)=2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = -1
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3
Supp(W) = {0,1} = Supp(W) is countable — W is discrete
Supp(X) = {0,1} = Supp(X) is countable — X is discrete
Supp(Y) = {0,1,2,3} = Supp(Y) is countable = Y is discrete
Supp(Zz) = {-3,-1,1,3} = Supp(Z)is countable — Z is discrete
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: 2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA,FFF}

W = If 3" seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)

Let random variables

Then:

W(AAA) = 1
W(AAF) = 0
W(AFA) = 1
W(AFF) = 0
W(FAA) = 1
W(FAF) = 0
W(FFA) = 1
W(FFF) = 0

Y = Number of available seats in car
Z = Difference in # of available and occupied seats

X(AAA) =1 Y(AAA) =
X(AAF) =1 Y(AAF) =
X(AFA) =1 Y(AFA) =
X(AFF) =1 Y(AFF) =
X(FAA) =1 Y(FAA) =
X(FAF) =1 Y(FAF) =
X(FFA) =1 Y(FFA) =
X(FFF) =0 Y(FFF) =

Z(AAA)=3-0 = 3
Z(AAF)=2-1 = 1
ZAFA)=2—-1 = 1
Z(AFF)=1-2 = -1
Z(FAA) =2—-1 = 1
Z(FAF)=1-2 = -1
Z(FFA)=1-2 = -1
Z(FFF)=0-3 = -3

pw(0)
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: 2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA,FFF}

W = If 3" seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)
Y = Number of available seats in car

Z = Difference in # of available and occupied seats

Let random variables

W(AAA) =1 X(A4AA) =1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF) =1 Y(AAF)=2 Z(AAF)=2-1 = 1
W(AFA) =1 X(AFA) =1 Y(AFA)=2 Z(AFA)=2—-1 = 1

Then: WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -I
N W(FAA) =1 X(FAA) =1 Y(FAA)=2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = -1
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3

4 1

pw(1) =P(W =1) = P(w € {AAA,AFAFAAFFA}) = o = 5
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: Q2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA, FFF}

W = If 3 seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)

Let random variables

Y = Number of available seats in car
Z = Difference in # of available and occupied seats

W(AAA) =1 X(AAA) =1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF)=1 Y(AAF)=2 Z(AAF)=2-1 = |1
WAFA) =1 X(AFA)=1 Y(ARA)=2 Z(AFA)=2-1 = 1
Then: WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -1
" W(mA) =1 X(FA) =1 Y(HA) =2 Z(FA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = -1
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3

12 ,ifk=0 koo |1

pW(k):{ 12 Litk=1 R w2z
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: 2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA,FFF}

W = If 3 seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)

Let random variables

Y = Number of available seats in car

Z = Difference in # of available and occupied seats

W(AAA) =1 X(AAA) =1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF) =1 Y(AAF)=2 Z(AAF)=2—1 = 1
W(AFA) =1 X(AFA) =1 Y(AFA)=2 Z[ARA)=2-1 = 1

Then: WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -1
N W(mA) =1 X(FAA)=1 Y(FAA) =2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = -1
W(FFA) =1 X(FFA) Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3

{FFF} 1

PX(O

~—
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: 2 = {AAA,AAF,AFA, AFF, FAA, FAF, FFA, FFF}

Let random variables

W = If 3" seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)
Y = Number of available seats in car

Z = Difference in # of available and occupied seats

W(AAA) =1 X(AAA)=1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF)=1 Y(AAF)=2 Z(AAF)=2-1 = 1
W(AFA) =1 X(AFA)=1 Y(AFRA)=2 Z(ARA)=2-1 = 1

Then. WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -I
N W(mA)=1 X(FAA)=1 Y(FAA)=2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = —1
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3

px(1) = P(X = 1) = P(w € {AAA,AAF,AFA, AFF,FAA,FAF,FFA}) = %

Josh Engwer (TTU)
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: Q2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA, FFF}

W = If 3 seat in car is available (1 = Yes, 0 = No)

X = If car has any available seats (1 = Yes, 0 = No)

Y = Number of available seats in car

Z = Difference in # of available and occupied seats

Let random variables

W(AAA) =1 X(AAA) =1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF)=1 Y(AAF)=2 Z(AAF)=2-1 = 1
WAFA) =1 X(AFA)=1 Y(ARA)=2 Z(AFA)=2-1 = 1

Then: WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -1
" W(mA) =1 X(FA) =1 Y(HA) =2 Z(FA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = -1
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: 2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA,FFF}

W = If 3 seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)
Y = Number of available seats in car

Z = Difference in # of available and occupied seats

Let random variables

W(AAA) =1 X(AAA) =1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF)=1 Y(AAF)=2 Z(AAF)=2-1 = 1
W(AFA) =1 X(AFA) =1 Y(AFA)=2 Z[ARA)=2-1 = 1

Then: WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -1
N W(mA) =1 X(FAA)=1 Y(FAA) =2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = -1
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3

py(0) = B(Y = 0) = P(w e {FFF}) = LEFEH _ 1
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: 2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA,FFF}

W = If 3" seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)
Y = Number of available seats in car

Z = Difference in # of available and occupied seats

Let random variables

W(AAA) =1 X(AAA) =1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF) =1 Y(AAF)=2 Z(AAF)=2—1 = 1
W(AFA) =1 X(AFA) =1 Y(AFA)=2 Z(AFA)=2—1 = 1

Then. WWAFF) =0 X(AFF)=1 Y(AFF)=1 ZAFF)=1-2 = -I
N W(mA) =1 X(FAA)=1 Y(FAA)=2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = -1
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3

pr(1) = P(Y = 1) = P(w € {AFF,FAF,FFA}) =

~8
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Let random variables
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pmf of a Discrete Random Variable (Examples)

Y(AAA) = 3
Y(AAF) = 2
Y(AFA) = 2
Y(AFF) = 1
Y(FAA) = 2
Y(FAF) = 1
Y(FFA) = 1
Y(FFF) =0

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: 2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA,FFF}

W = If 3" seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)
Y = Number of available seats in car

Z = Difference in # of available and occupied seats
X(AAA) =1

P(Y = 2) = P(w € {AAF,AFA,FAA})
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: 2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA,FFF}

W = If 3 seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)
Y = Number of available seats in car

Z = Difference in # of available and occupied seats

Let random variables

W(AAA) =1 X(AAA)=1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF)=1 Y(AAF)=2 Z(AAF)=2-1 = 1
W(AFA) =1 X(AFA)=1 Y(AFA)=2 Z(AFA)=2-1 = 1

Then: WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -I
" W(mA) =1 X(BmA) =1 Y(FAA)=2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = -1
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3

[{AAA}] 1

pr(3) =P(Y=3) =

|
=
€
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—
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I
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: = {AAA,AAF,AFA, AFF, FAA, FAF, FFA, FFF}

W = If 3" seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)
Y = Number of available seats in car

Z = Difference in # of available and occupied seats

Let random variables

W(AAA) =1 X(AAA)=1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF)=1 Y(AAF)=2 Z(AAF)=2-1 = 1
WAFA) =1 X(ARA)=1 YAR)=2 ZARA)=2-1 = 1
The.  WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -I
N WA =1 X(FAA)=1 Y(FAA)=2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = —I
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: 2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA,FFF}

W = If 3 seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)
Y = Number of available seats in car

Z = Difference in # of available and occupied seats

Let random variables

W(AAA) =1 X(AAA) =1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF)=1 Y(AAF)=2 Z(AAF)=2-1 = 1
W(AFA) =1 X(AFA) =1 Y(AFA)=2 Z[ARA)=2-1 = 1

Then: WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -1
N W(mA) =1 X(FAA)=1 Y(FAA) =2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = -1
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3

pa(-3) = B(Z = -3) = P(w e {FFF}y) = LLFEI 1
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: 2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA,FFF}

W = If 3" seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)
Y = Number of available seats in car

Z = Difference in # of available and occupied seats

Let random variables

W(AAA) =1 X(AAA) =1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF) =1 Y(AAF)=2 Z(AAF)=2—1 = 1
W(AFA) =1 X(AFA) =1 Y(AFA)=2 Z(AFA)=2—1 = 1

Then: WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -1
N W(mA) =1 X(FAA)=1 Y(FAA)=2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = -1
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3

3

pz(-1) =P(Z =-1) = P(w € {AFFFAFFFA}) = ©
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: 2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA,FFF}

W = If 3" seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)
Y = Number of available seats in car

Z = Difference in # of available and occupied seats

Let random variables

W(AAA) =1 X(AAA) =1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF)=1 Y(AAF)=2 Z(AAF)=2-1 = 1
W(AFA) =1 X(AFA) =1 Y(AFA)=2 Z(AFA)=2-1 = 1
Then: WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -I
" W(mA) =1 X(FAA)=1 Y(FAA)=2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = -1
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3
3

pz(1) = B(Z =1) = B(w € {AAFAFAFAA}) = =
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: 2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA,FFF}

W = If 3 seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)
Y = Number of available seats in car

Z = Difference in # of available and occupied seats

Let random variables

W(AAA) =1 X(AAA) =1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF) =1 Y(AAF)=2 Z(AAF)=2-1 = 1
W(AFA) =1 X(AFA) =1 Y(AFA)=2 Z(AFA)=2—-1 = 1

Then: WAFF) =0 X(AFF)=1 Y(AFF)=1 Z@AFF)=1-2 = -1
' WmA) =1 X(FAA)=1 Y(FAA) =2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = -1
W(FFA) =1 X(FFA)=1 Y(FFA) =1 Z(FFA)fle = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3

{AAA}| 1

pz(3) =P(Z=3) =P(w € {AAA}) = =-
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pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: = {AAA,AAF,AFA, AFF, FAA, FAF, FFA, FFF}

Let random variables

W = If 3" seat in car is available (1 = Yes, 0 = No)
X = If car has any available seats (1 = Yes, 0 = No)
Y = Number of available seats in car

Z = Difference in # of available and occupied seats

W(AAA) =1 X(AAA)=1 Y(AAA)=3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF)=1 Y(AAF)=2 Z(AAF)=2-1 = 1
WAFA) =1 X(ARA)=1 YAR)=2 ZARA)=2-1 = 1
The.  WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -I
N WA =1 X(FAA)=1 Y(FAA)=2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = —I
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3
1/8 ,ifk=—-3
3/8 L ifk=—1 k| -3 -1] 113
2K =9 38 Jitk= 1 OR s (383818
1/8 ifk= 3

Josh Engwer (TTU)
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Verification of pmf’s

ko1 Z PW(k):PW(O)‘*‘PW(l):%"‘l:l v

Pt ‘ 2 ‘ 172 keSupp(W) 2
: 0 ! 1 7
px(k) || 1/817/8 > px(k) = px(0) + px(1) = sta=1v

keSupp(X)

k Jlof1]2]3
pr(®) || 1/8 | 3/8 | 3/8 | 1/8

1 3 3 1
> pr(k) =py(0)+pr(1) +pr(2) +pr(3) = gtgtgtsg=1"
keSupp(Y)
k | -3|-1]11]3
p2(0) || 1/8 | 3/8 | 3/8 | 1/8
1 3 3 1
Z pz(k) = pz(=3) + pz(—1) + pz(1) + pz(3) = gtgtgtsg=1 v
keSupp(Z)
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Cumulative Density Function (cdf) of a Discrete r.v.

Definition
(cdf of a Discrete Random Variable)

Let X be a discrete random variable s.t.  Supp(X) = {ki, k2, k3, }
Then, its cdf, denoted as Fx(x), is defined as follows:

Fx(x) :=P(X <x) pr ) Vx eR
ki<x

Corollary

(cdf Axioms)

LetX be a discrete random variable. Then, its cdf Fx(x), satisfies
Eventually Zero (One) to the Left (Right): x—l)h;noo Fx(x) =0, xligloo Fx(x) =1

| A

Non-decreasing: x1 <xy = Fx(x1) < Fx(x)

Right-continuous: lifxn Fx(x) = Fx(xo) Vxo € R
XJ-X0

Piecewise Constant: (AKA step function)
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Computing cdf’s from pmf’s

1/2

pw(k) = { 1/2

1/8

px(k) = { 7/8

1/8
3/8
3/8
1/8

1/8
3/8
3/8
1/8

E]

; 0 ,ifx <O
M S Rw={ L iose<
Jifk=1 L2 :

E"‘z ,If1§x
; 0 ,ifx <0
=0 = Fx(x) = L ifo<x<1
ifk=1 . !

g‘f‘g Jifl <x
ifk=0 0 ,!;x<0
ifk=1 g ,ifo<x<1
iy = Fy(x) = 143 Jifl<x<?2
Jifk=2 3T 8, :
if k =3 stgtg Hif2<x<3
’ T+3+341L if3<x
; 0 Jifx < =3
’:I’Zij’ Lo if—3<x< 1
k= 1 Fz(x) = T3 if—1<x<1
k= 3 Tydgd Jif1<x<3
T 1 f3<x
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Computing cdf’s from pmf’s

pw(k) = { iﬁ

px(k) = { %S

1/8
pr(k) = g?g

1/8

1/8
pz(k) = g;g

1/8

Jifk=0
Jifk=1

,ifk=0

Jifk=1

k=0 1/8

Jifk=1

Jifk=2 7/8

Jifk=3

. 0
- s
R = Fz(x)=1<¢ 1/2
Jifk= 1 7/8
Jifk= 3

1

,ifx <0
,ifo<x<1
Jif 1 <x

,ifx<0
,ifo<x<1
Jif1 <x

,ifx <0
,ifo<x<1
,if1l<x<?2
,if2<x<3
,if3 <x

,ifx < =3

Jif =3 <x<~1
Jif —1<x<1
,if1<x<3
Lif3 <x
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Plots of pmf & cdf of each Discrete Random Variable

kK o1
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Plots of pmf & cdf of each Discrete Random Variable

kK || o] 1
px(k) [ 1/817/8
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Plots of pmf & cdf of each Discrete Random Variable

kK o1 |2]3
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Plots of pmf & cdf of each Discrete Random Variable
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Computing Probabilities using a Discrete cdf

Let X be a discrete r.v. with cdf Fx(x). Letscalarsa,b e R s.t. a<b. Then:
P(X <a) = Fx(a)
P(X <a) = Fx(a—)
P(a S X S b) = Fx(b) — Fx(a—)
Pla<X<b) = Fx(b—)—Fx(a)
Pla<X<b) = Fx(b) —Fx(a)
IP’(a §X<b) = Fx(b—) —Fx(a—)
PX>b) = 1-—Fx(b—)
PX>b) = 1-—Fx(b)
P(X=a) = Fx(a)—Fx(a—)
where: ”a — 7 represents the largest k € Supp(X) such thatk < a
’ "b — 7 represents the largest k € Supp(X) such thatk < b
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Comparison of Probabilities via pmf v.s. cdf

i 0 ,ifx<oO
;fg ,:;Z;(l) 1/8 ,if0o<x<1
1/8 Lifk=3 7/8 Lif2<x<3
o 1 Lif3<x
1 3 3 7
P(Ygz):py(0)+py(1)+py(2):§+g+§:§
P(YSZ):FY(Z):%
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Comparison of Probabilities via pmf v.s. cdf

if k = 0 ,ifx<oO
ZS :;Z;? 1/8 .if0<x<I
pr(k) = 38 ,ifk:2 = Fy(x) = 12 ,ifl<x<2
18 Lifk=3 7/8 Lif2<x<3

T 1 Lif3<x
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Comparison of Probabilities via pmf v.s. cdf

i 0 ,ifx<O0
i?ﬁ :;i;? 1/8 if0<x<l
pr(k) = 38 ,ifk:2 :}Fy(x): 12 ,ifl<x<2
1/8 ifk=3 7/8 ,if2<x<3
o 1 if3<x
3
P(Y=2) =py(2) = 8

P(Y = 2) = Fy(2) — Fy(2—) = Fy(2) — Fy(1) = % _

P(Y =2.5)=py(2.5)=0 [Since 2.5 ¢ Supp(Y)]

P(Y = 2.5) = Fy(2.5) — Fy(2.5—) = Fy(2.5) — Fy(2) = % - % =0
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Textbook Logistics for Section 3.2

@ Difference(s) in Terminology:

TEXTBOOK SLIDES/OUTLINE
TERMINOLOGY TERMINOLOGY
Null Event Empty Set (

Number of Outcomes in E

Measure of E

@ Difference(s) in Notation:

TEXTBOOK SLIDES/OUTLINE
CONCEPT NOTATION NOTATION
Sample Space S Q
Probability of Event P(A) P(A)
Measure of Event N(A) |A|
Support of ar.v. | ”All possible values of X” Supp(X)
Support of a r.v. D Supp(X)
pmf of a r.v. p(x) px (k)
cdf of ar.v. F(x) Fx(x)
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Textbook Logistics for Section 3.2

@ Skip Parameter(s) of a Probability Distribution (pg 103)

e Parameters are often associated with pmf’s of well-known random variables

o Parameters will be covered in Sections 3.4 & 3.6

e Parameters also occur with continuous random variables, and hence will
also be covered in Ch4.
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