Discrete r.v.'s: pmf's & cdf's Engineering Statistics Section 3.2

Josh Engwer

TTU

17 February 2016

Josh Engwer (TTU)

Probability Mass Function (pmf) of a Discrete r.v.

The pmf assigns a probability to each possible value of a discrete r.v.:

Definition

(pmf of a Discrete Random Variable)

Let *X* be a **discrete** random variable. Then, its **pmf**, denoted as $p_X(k)$, is defined as follows:

$$p_X(k) := \mathbb{P}(X = k) \ \forall k \in \mathsf{Supp}(X)$$

Corollary

(pmf Axioms)

Let *X* be a **discrete** random variable. Then, its **pmf** $p_X(k)$ satisfies

Non-negativity on its Support:

$$p_X(k) \ge 0 \qquad \forall k \in Supp(X)$$

Universal Sum of Unity:

$$\sum_{\in Supp(X)} p_X(k) = 1$$

Experiment: Observe which seats in a 3-seat car are occupied (<i>F</i>) or not (<i>A</i>) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$					
Let random variables		$W \equiv \text{If } 3^{rd} \text{ seat in car is available } (1 = \text{Yes, } 0 = \text{No})$ $X \equiv \text{If car has any available seats } (1 = \text{Yes, } 0 = \text{No})$ $Y \equiv \text{Number of available seats in car}$ $Z \equiv \text{Difference in # of available and occupied seats}$			
Then:	· · · ·	$\begin{aligned} X(AAF) &= 1\\ X(AFA) &= 1\\ X(AFF) &= 1\\ X(FAA) &= 1\\ X(FAF) &= 1 \end{aligned}$	Y(AAF) = 2 Y(AFA) = 2 Y(AFF) = 1 Y(FAA) = 2 Y(FAF) = 1	Z(AAA) = 3 - 0 Z(AAF) = 2 - 1 Z(AFA) = 2 - 1 Z(AFF) = 1 - 2 Z(FAA) = 2 - 1 Z(FAA) = 2 - 1 Z(FAF) = 1 - 2 Z(FFA) = 1 - 2 Z(FFF) = 0 - 3	$ \begin{array}{rcrr} = & 1 \\ = & -1 \\ = & -1 \\ = & -1 \\ = & -1 \end{array} $
•• •	$ \begin{array}{l} X \\ Y \\ \end{array} = \begin{cases} 0 \\ 0 \\ \end{array} $		Supp (X) is Supp (Y) is	$\begin{array}{l} \text{s countable} \implies W \\ \text{s countable} \implies X \\ \text{s countable} \implies Y \\ \text{s countable} \implies Z \end{array}$	is discrete is discrete

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

 $W \equiv \text{If } 3^{rd} \text{ seat in car is available} (1 = \text{Yes}, 0 = \text{No})$ $X \equiv$ If car has any available seats (1 = Yes, 0 = No) Let random variables Y = Number of available seats in car $Z \equiv$ Difference in # of available and occupied seats W(AAA) = 1 X(AAA) = 1 Y(AAA) = 3 Z(AAA) = 3 - 0 =3 W(AAF) = 0 X(AAF) = 1 Y(AAF) = 2 Z(AAF) = 2 - 1 = 1W(AFA) = 1 X(AFA) = 1 Y(AFA) = 2 Z(AFA) = 2 - 1 = 1W(AFF) = 0 X(AFF) = 1 Y(AFF) = 1 Z(AFF) = 1 - 2 = -1Then: W(FAA) = 1 X(FAA) = 1 Y(FAA) = 2 Z(FAA) = 2 - 1 = 1W(FAF) = 0 X(FAF) = 1 Y(FAF) = 1 Z(FAF) = 1 - 2 = -1W(FFA) = 1 X(FFA) = 1 Y(FFA) = 1 Z(FFA) = 1 - 2 = -1 $W(FFF) = 0 \quad X(FFF) = 0$ Y(FFF) = 0 Z(FFF) = 0 - 3 = -3

 $p_W(\mathbf{0}) = \mathbb{P}(\mathbf{W} = \mathbf{0}) = \mathbb{P}(\omega \in {\mathsf{AAF}, \mathsf{AFF}, \mathsf{FAF}, \mathsf{FFF}}) = \frac{4}{8} = \frac{1}{2}$

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$ $W \equiv \text{If } 3^{rd} \text{ seat in car is available} (1 = \text{Yes}, 0 = \text{No})$

Let random variables $\begin{array}{l} X \equiv \text{If car has any available seats (1 = Yes, 0 = No)} \\ Y \equiv \text{Number of available seats in car} \\ Z \equiv \text{Difference in # of available and occupied seats} \end{array}$ $\begin{array}{l} W(AAA) = 1 \quad X(AAA) = 1 \quad Y(AAA) = 3 \quad Z(AAA) = 3 - 0 = 3 \\ W(AAF) = 0 \quad X(AAF) = 1 \quad Y(AAF) = 2 \quad Z(AAF) = 2 - 1 = 1 \\ W(AFA) = 1 \quad X(AFA) = 1 \quad Y(AFA) = 2 \quad Z(AFA) = 2 - 1 = 1 \\ W(AFF) = 0 \quad X(AFF) = 1 \quad Y(AFF) = 1 \quad Z(AFF) = 1 - 2 = -1 \\ W(FAA) = 1 \quad X(FAA) = 1 \quad Y(FAA) = 2 \quad Z(FAA) = 2 - 1 = 1 \\ W(FAF) = 0 \quad X(FAF) = 1 \quad Y(FAF) = 1 \quad Z(FAF) = 1 - 2 = -1 \\ W(FAF) = 0 \quad X(FFF) = 1 \quad Y(FFA) = 1 \quad Z(FFA) = 1 - 2 = -1 \\ W(FFF) = 0 \quad X(FFF) = 0 \quad Y(FFF) = 0 \quad Z(FFF) = 0 - 3 = -3 \end{array}$

 $p_W(1) = \mathbb{P}(W = 1) = \mathbb{P}(\omega \in \{AAA, AFA, FAA, FFA\}) = \frac{4}{8} = \frac{1}{2}$

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

 $W \equiv \text{If } 3^{rd} \text{ seat in car is available} (1 = \text{Yes}, 0 = \text{No})$ $X \equiv$ If car has any available seats (1 = Yes, 0 = No) Let random variables $Y \equiv$ Number of available seats in car $Z \equiv$ Difference in # of available and occupied seats W(AAA) = 1 X(AAA) = 1 Y(AAA) = 3 Z(AAA) = 3 - 0 =3 W(AAF) = 0 X(AAF) = 1 Y(AAF) = 2 Z(AAF) = 2 - 1 = 1W(AFA) = 1 X(AFA) = 1 Y(AFA) = 2 Z(AFA) = 2 - 1 = 1W(AFF) = 0 X(AFF) = 1 Y(AFF) = 1 Z(AFF) = 1 - 2 = -1Then: W(FAA) = 1 X(FAA) = 1 Y(FAA) = 2 Z(FAA) = 2 - 1 = 1W(FAF) = 0 X(FAF) = 1 Y(FAF) = 1 Z(FAF) = 1 - 2 = -1W(FFA) = 1 X(FFA) = 1 Y(FFA) = 1 Z(FFA) = 1 - 2 = -1Y(FFF) = 0 Z(FFF) = 0 - 3 = -3 $W(FFF) = 0 \quad X(FFF) = 0$

$$\therefore p_W(k) = \begin{cases} 1/2 & \text{, if } k = 0 \\ 1/2 & \text{, if } k = 1 \end{cases} \quad \text{OR} \quad \frac{k \| 0 \| 1}{p_W(k) \| 1/2 \| 1/2}$$

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

 $W \equiv \text{If } 3^{rd} \text{ seat in car is available} (1 = \text{Yes}, 0 = \text{No})$ $X \equiv$ If car has any available seats (1 = Yes, 0 = No) Let random variables $Y \equiv$ Number of available seats in car $Z \equiv$ Difference in # of available and occupied seats W(AAA) = 1 X(AAA) = 1 Y(AAA) = 3 Z(AAA) = 3 - 0 =3 W(AAF) = 0 X(AAF) = 1 Y(AAF) = 2 Z(AAF) = 2 - 1 = 1W(AFA) = 1 X(AFA) = 1 Y(AFA) = 2 Z(AFA) = 2 - 1 = 1W(AFF) = 0 X(AFF) = 1 Y(AFF) = 1 Z(AFF) = 1 - 2 = -1Then: W(FAA) = 1 X(FAA) = 1 Y(FAA) = 2 Z(FAA) = 2 - 1 = 1W(FAF) = 0 X(FAF) = 1 Y(FAF) = 1 Z(FAF) = 1 - 2 = -1W(FFA) = 1 X(FFA) = 1Y(FFA) = 1 Z(FFA) = 1 - 2 = -1 $W(FFF) = 0 \quad \mathbf{X(FFF)} = \mathbf{0}$ Y(FFF) = 0 Z(FFF) = 0 - 3 = -3

$$p_X(\mathbf{0}) = \mathbb{P}(\mathbf{X} = \mathbf{0}) = \mathbb{P}(\omega \in \{\mathsf{FFF}\}) = rac{|\{FFF\}|}{|\Omega|} = rac{1}{8}$$

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

 $W \equiv \text{If } 3^{rd} \text{ seat in car is available} (1 = \text{Yes}, 0 = \text{No})$ $X \equiv$ If car has any available seats (1 = Yes, 0 = No) Let random variables Y = Number of available seats in car $Z \equiv$ Difference in # of available and occupied seats W(AAA) = 1 X(AAA) = 1 Y(AAA) = 3 Z(AAA) = 3 - 0 = 3W(AAF) = 0 X(AAF) = 1 Y(AAF) = 2 Z(AAF) = 2 - 1 = 1W(AFA) = 1 X(AFA) = 1 Y(AFA) = 2 Z(AFA) = 2 - 1 = 1W(AFF) = 0 X(AFF) = 1 Y(AFF) = 1 Z(AFF) = 1 - 2 = -1Then: W(FAA) = 1 X(FAA) = 1 Y(FAA) = 2 Z(FAA) = 2 - 1 = 1 W(FAF) = 0 X(FAF) = 1 Y(FAF) = 1 Z(FAF) = 1 - 2 = -1W(FFA) = 1 X(FFA) = 1 Y(FFA) = 1 Z(FFA) = 1 - 2 = -1W(FFF) = 0 X(FFF) = 0Y(FFF) = 0 Z(FFF) = 0 - 3 = -3

 $p_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(\omega \in \{AAA, AAF, AFA, AFF, FAA, FAF, FFA\}) = \frac{7}{8}$

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

 $W \equiv \text{If } 3^{rd} \text{ seat in car is available} (1 = \text{Yes}, 0 = \text{No})$ $X \equiv$ If car has any available seats (1 = Yes, 0 = No) Let random variables $Y \equiv$ Number of available seats in car $Z \equiv$ Difference in # of available and occupied seats W(AAA) = 1 X(AAA) = 1 Y(AAA) = 3 Z(AAA) = 3 - 0 =3 W(AAF) = 0 X(AAF) = 1 Y(AAF) = 2 Z(AAF) = 2 - 1 = 1W(AFA) = 1 X(AFA) = 1 Y(AFA) = 2 Z(AFA) = 2 - 1 = 1W(AFF) = 0 X(AFF) = 1 Y(AFF) = 1 Z(AFF) = 1 - 2 = -1Then: W(FAA) = 1 X(FAA) = 1 Y(FAA) = 2 Z(FAA) = 2 - 1 = 1W(FAF) = 0 X(FAF) = 1 Y(FAF) = 1 Z(FAF) = 1 - 2 = -1W(FFA) = 1 X(FFA) = 1 Y(FFA) = 1 Z(FFA) = 1 - 2 = -1Y(FFF) = 0 Z(FFF) = 0 - 3 = -3 $W(FFF) = 0 \quad X(FFF) = 0$

$$\therefore p_X(k) = \begin{cases} 1/8 & \text{, if } k = 0 \\ 7/8 & \text{, if } k = 1 \end{cases} \quad \text{OR} \quad \frac{k \| 0 \| 1}{p_X(k) \| 1/8 \| 7/8}$$

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

 $W \equiv \text{If } 3^{rd} \text{ seat in car is available} (1 = \text{Yes}, 0 = \text{No})$ $X \equiv$ If car has any available seats (1 = Yes, 0 = No) Let random variables $Y \equiv$ Number of available seats in car $Z \equiv$ Difference in # of available and occupied seats W(AAA) = 1 X(AAA) = 1 Y(AAA) = 3 Z(AAA) = 3 - 0 =3 W(AAF) = 0 X(AAF) = 1 Y(AAF) = 2 Z(AAF) = 2 - 1 = 1W(AFA) = 1 X(AFA) = 1 Y(AFA) = 2 Z(AFA) = 2 - 1 = 1W(AFF) = 0 X(AFF) = 1 Y(AFF) = 1 Z(AFF) = 1 - 2 = -1Then: W(FAA) = 1 X(FAA) = 1 Y(FAA) = 2 Z(FAA) = 2 - 1 = 1W(FAF) = 0 X(FAF) = 1 Y(FAF) = 1 Z(FAF) = 1 - 2 = -1W(FFA) = 1 X(FFA) = 1 Y(FFA) = 1 Z(FFA) = 1 - 2 = -1W(FFF) = 0 X(FFF) = 0**Y(FFF) = 0** Z(FFF) = 0 - 3 = -3

$$p_Y(\mathbf{0}) = \mathbb{P}(\mathbf{Y} = \mathbf{0}) = \mathbb{P}(\omega \in \{\mathbf{FFF}\}) = rac{|\{FFF\}|}{|\Omega|} = rac{1}{8}$$

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

 $W \equiv \text{If } 3^{rd} \text{ seat in car is available} (1 = \text{Yes}, 0 = \text{No})$ $X \equiv$ If car has any available seats (1 = Yes, 0 = No) Let random variables Y = Number of available seats in car $Z \equiv$ Difference in # of available and occupied seats W(AAA) = 1 X(AAA) = 1 Y(AAA) = 3 Z(AAA) = 3 - 0 =3 W(AAF) = 0 X(AAF) = 1 Y(AAF) = 2 Z(AAF) = 2 - 1 = 1W(AFA) = 1 X(AFA) = 1 Y(AFA) = 2 Z(AFA) = 2 - 1 = 1W(AFF) = 0 X(AFF) = 1 Y(AFF) = 1 Z(AFF) = 1 - 2 = -1Then: W(FAA) = 1 X(FAA) = 1 Y(FAA) = 2 Z(FAA) = 2 - 1 = 1W(FAF) = 0 X(FAF) = 1 Y(FAF) = 1 Z(FAF) = 1 - 2 = -1W(FFA) = 1 X(FFA) = 1 Y(FFA) = 1 Z(FFA) = 1 - 2 = -1W(FFF) = 0 X(FFF) = 0Y(FFF) = 0 Z(FFF) = 0 - 3 = -3

$$p_Y(1) = \mathbb{P}(\mathbf{Y} = 1) = \mathbb{P}(\omega \in {\mathsf{AFF,FAF,FFA}}) = \frac{3}{8}$$

~

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

 $W \equiv \text{If } 3^{rd} \text{ seat in car is available} \quad (1 = \text{Yes}, 0 = \text{No})$ $X \equiv$ If car has any available seats (1 = Yes, 0 = No) Let random variables Y = Number of available seats in car $Z \equiv$ Difference in # of available and occupied seats W(AAA) = 1 X(AAA) = 1 Y(AAA) = 3 Z(AAA) = 3 - 0 =3 W(AAF) = 0 X(AAF) = 1 Y(AAF) = 2 Z(AAF) = 2 - 1 = 1W(AFA) = 1 X(AFA) = 1 Y(AFA) = 2 Z(AFA) = 2 - 1 = 1W(AFF) = 0 X(AFF) = 1 Y(AFF) = 1 Z(AFF) = 1 - 2 = -1Then: W(FAA) = 1 X(FAA) = 1 Y(FAA) = 2 Z(FAA) = 2 - 1 = 1W(FAF) = 0 X(FAF) = 1 Y(FAF) = 1 Z(FAF) = 1 - 2 = -1W(FFA) = 1 X(FFA) = 1 Y(FFA) = 1 Z(FFA) = 1 - 2 = -1W(FFF) = 0 X(FFF) = 0Y(FFF) = 0 Z(FFF) = 0 - 3 = -3

$$p_Y(\mathbf{2}) = \mathbb{P}(\mathbf{Y} = \mathbf{2}) = \mathbb{P}(\omega \in \{\mathsf{AAF}, \mathsf{AFA}, \mathsf{FAA}\}) = \frac{3}{8}$$

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

 $W \equiv \text{If } 3^{rd} \text{ seat in car is available} (1 = \text{Yes}, 0 = \text{No})$ $X \equiv$ If car has any available seats (1 = Yes, 0 = No) Let random variables $Y \equiv$ Number of available seats in car $Z \equiv$ Difference in # of available and occupied seats W(AAA) = 1 X(AAA) = 1 Y(AAA) = 3 Z(AAA) = 3 - 0 = 3W(AAF) = 0 X(AAF) = 1 Y(AAF) = 2 Z(AAF) = 2 - 1 = 1W(AFA) = 1 X(AFA) = 1 Y(AFA) = 2 Z(AFA) = 2 - 1 = 1W(AFF) = 0 X(AFF) = 1 Y(AFF) = 1 Z(AFF) = 1 - 2 = -1Then: W(FAA) = 1 X(FAA) = 1 Y(FAA) = 2 Z(FAA) = 2 - 1 = 1W(FAF) = 0 X(FAF) = 1 Y(FAF) = 1 Z(FAF) = 1 - 2 = -1W(FFA) = 1 X(FFA) = 1 Y(FFA) = 1 Z(FFA) = 1 - 2 = -1W(FFF) = 0 X(FFF) = 0Y(FFF) = 0Z(FFF) = 0 - 3 = -3

$$p_Y(\mathbf{3}) = \mathbb{P}(\mathbf{Y} = \mathbf{3}) = \mathbb{P}(\omega \in \{\mathbf{AAA}\}) = \frac{|\{AAA\}|}{|\Omega|} = \frac{1}{8}$$

Experiment: Observe which seats in a 3-seat car are occupied (<i>F</i>) or not (<i>A</i>) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$				
Let random variables $W \equiv \text{If } 3^{rd}$ seat in car is available $(1 = \text{Yes}, 0 = \text{Normal})$ $X \equiv \text{If car has any available seats } (1 = \text{Yes}, 0 = \text{Normal})$ $Y \equiv \text{Number of available seats in car}$ $Z \equiv \text{Difference in # of available and occupied seats}$		e seats (1 = Yes, 0 = No) eats in car		
	W(AAA) = 1	· /	· /	Z(AAA) = 3 - 0 = 3
Then:	W(AAF) = 0		(/	Z(AAF) = 2 - 1 = 1
		(/	(/	Z(AFA) = 2 - 1 = 1
	W(AFF) = 0	X(AFF) = 1	Y(AFF) = 1	Z(AFF) = 1 - 2 = -1
	W(FAA) = 1	X(FAA) = 1	Y(FAA) = 2	Z(FAA) = 2 - 1 = 1
	W(FAF) = 0	X(FAF) = 1	Y(FAF) = 1	Z(FAF) = 1 - 2 = -1
	W(FFA) = 1	X(FFA) = 1	Y(FFA) = 1	Z(FFA) = 1 - 2 = -1
	W(FFF) = 0	X(FFF) = 0	Y(FFF) = 0	Z(FFF) = 0 - 3 = -3
$\therefore p_Y(k) = \begin{cases} 1/8 & \text{, if } k = 0\\ 3/8 & \text{, if } k = 1\\ 3/8 & \text{, if } k = 2\\ 1/8 & \text{, if } k = 3 \end{cases} \text{OR} \frac{k \ 0 \ 1 \ 2 \ 3}{p_Y(k) \ 1/8 \ 3/8 \ 3/8 \ 1/8}$				

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

 $W \equiv \text{If } 3^{rd} \text{ seat in car is available} (1 = \text{Yes}, 0 = \text{No})$ $X \equiv$ If car has any available seats (1 = Yes, 0 = No) Let random variables $Y \equiv$ Number of available seats in car $Z \equiv$ Difference in # of available and occupied seats W(AAA) = 1 X(AAA) = 1 Y(AAA) = 3 Z(AAA) = 3 - 0 =3 W(AAF) = 0 X(AAF) = 1 Y(AAF) = 2 Z(AAF) = 2 - 1 = 1W(AFA) = 1 X(AFA) = 1 Y(AFA) = 2 Z(AFA) = 2 - 1 = 1W(AFF) = 0 X(AFF) = 1 Y(AFF) = 1 Z(AFF) = 1 - 2 = -1Then: W(FAA) = 1 X(FAA) = 1 Y(FAA) = 2 Z(FAA) = 2 - 1 = 1W(FAF) = 0 X(FAF) = 1 Y(FAF) = 1 Z(FAF) = 1 - 2 = -1W(FFA) = 1 X(FFA) = 1 Y(FFA) = 1 Z(FFA) = 1 - 2 = -1W(FFF) = 0 X(FFF) = 0Y(FFF) = 0 **Z(FFF)** = 0 - 3 = -3

$$p_Z(\textbf{-3}) = \mathbb{P}(\mathsf{Z} = \textbf{-3}) = \mathbb{P}(\omega \in \{\mathsf{FFF}\}) = \frac{|\{FFF\}|}{|\Omega|} = \frac{1}{8}$$

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

 $W \equiv \text{If } 3^{rd} \text{ seat in car is available} \quad (1 = \text{Yes}, 0 = \text{No})$ $X \equiv$ If car has any available seats (1 = Yes, 0 = No) Let random variables Y = Number of available seats in car $Z \equiv$ Difference in # of available and occupied seats W(AAA) = 1 X(AAA) = 1 Y(AAA) = 3 Z(AAA) = 3 - 0 =3 W(AAF) = 0 X(AAF) = 1 Y(AAF) = 2 Z(AAF) = 2 - 1 =1 W(AFA) = 1 X(AFA) = 1 Y(AFA) = 2 Z(AFA) = 2 - 1 =1 W(AFF) = 0 X(AFF) = 1 Y(AFF) = 1 Z(AFF) = 1 - 2 = -1Then: W(FAA) = 1 X(FAA) = 1 Y(FAA) = 2 Z(FAA) = 2 - 1 = 1 W(FAF) = 0 X(FAF) = 1 Y(FAF) = 1 **Z(FAF)** = 1 - 2 = -1 W(FFA) = 1 X(FFA) = 1 Y(FFA) = 1 Z(FFA) = 1 - 2 = 1-1 W(FFF) = 0 X(FFF) = 0 Y(FFF) = 0 Z(FFF) = 0 - 3 = -3

$$p_Z(-1) = \mathbb{P}(\mathsf{Z} = -1) = \mathbb{P}(\omega \in \{\mathsf{AFF}, \mathsf{FAF}, \mathsf{FFA}\}) = \frac{3}{8}$$

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

 $W \equiv \text{If } 3^{rd} \text{ seat in car is available} \quad (1 = \text{Yes}, 0 = \text{No})$ $X \equiv$ If car has any available seats (1 = Yes, 0 = No) Let random variables Y = Number of available seats in car $Z \equiv$ Difference in # of available and occupied seats W(AAA) = 1 X(AAA) = 1 Y(AAA) = 3 Z(AAA) = 3 - 0 =3 W(AAF) = 0 X(AAF) = 1 Y(AAF) = 2 **Z(AAF)** = 2 - 1 = 1 W(AFA) = 1 X(AFA) = 1 Y(AFA) = 2 Z(AFA) = 2 - 1 = 1W(AFF) = 0 X(AFF) = 1 Y(AFF) = 1 Z(AFF) = 1 - 2 = -1Then: W(FAA) = 1 X(FAA) = 1 Y(FAA) = 2 Z(FAA) = 2 - 1 = 1W(FAF) = 0 X(FAF) = 1 Y(FAF) = 1 Z(FAF) = 1 - 2 = -1W(FFA) = 1 X(FFA) = 1 Y(FFA) = 1 Z(FFA) = 1 - 2 = -1W(FFF) = 0 X(FFF) = 0 Y(FFF) = 0 Z(FFF) = 0 - 3 = -3

$$p_Z(\mathbf{1}) = \mathbb{P}(\mathbf{Z} = \mathbf{1}) = \mathbb{P}(\omega \in {\mathbf{AAF}, \mathbf{AFA}, \mathbf{FAA}}) = \frac{3}{8}$$

Experiment: Observe which seats in a 3-seat car are occupied (*F*) or not (*A*) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$

 $W \equiv \text{If } 3^{rd} \text{ seat in car is available} (1 = \text{Yes}, 0 = \text{No})$ $X \equiv$ If car has any available seats (1 = Yes, 0 = No) Let random variables $Y \equiv$ Number of available seats in car $Z \equiv$ Difference in # of available and occupied seats W(AAA) = 1 X(AAA) = 1 Y(AAA) = 3 **Z(AAA)** = 3 - 0 = 3 W(AAF) = 0 X(AAF) = 1 Y(AAF) = 2 Z(AAF) = 2 - 1 = 1W(AFA) = 1 X(AFA) = 1 Y(AFA) = 2 Z(AFA) = 2 - 1 = 1W(AFF) = 0 X(AFF) = 1 Y(AFF) = 1 Z(AFF) = 1 - 2 = -1Then: W(FAA) = 1 X(FAA) = 1 Y(FAA) = 2 Z(FAA) = 2 - 1 = 1 W(FAF) = 0 X(FAF) = 1 Y(FAF) = 1 Z(FAF) = 1 - 2 = -1W(FFA) = 1 X(FFA) = 1 Y(FFA) = 1 Z(FFA) = 1 - 2 = -1W(FFF) = 0 X(FFF) = 0Y(FFF) = 0Z(FFF) = 0 - 3 = -3

$$p_Z(\mathbf{3}) = \mathbb{P}(\mathbf{Z} = \mathbf{3}) = \mathbb{P}(\omega \in {\mathbf{AAA}}) = \frac{|{AAA}|}{|\Omega|} = \frac{1}{8}$$

Experiment: Observe which seats in a 3-seat car are occupied (<i>F</i>) or not (<i>A</i>) Sample Space: $\Omega = \{AAA, AAF, AFA, AFF, FAA, FAF, FFA, FFF\}$				
Let random variables		$W \equiv \text{If } 3^{rd} \text{ seat in car is available } (1 = \text{Yes, } 0 = \text{No})$ $X \equiv \text{If car has any available seats } (1 = \text{Yes, } 0 = \text{No})$ $Y \equiv \text{Number of available seats in car}$ $Z \equiv \text{Difference in # of available and occupied seats}$		
	W(AAA) = 1	· /	· /	Z(AAA) = 3 - 0 = 3
Then:	W(AAF) = 0 $W(AFA) = 1$		· /	Z(AAF) = 2 - 1 = 1 Z(AFA) = 2 - 1 = 1
	W(AFA) = 1 $W(AFF) = 0$	(/	(/	Z(AFF) = 2 - 1 = -1 Z(AFF) = 1 - 2 = -1
	· /	· /	· · · ·	Z(FAA) = 2 - 1 = 1
	W(FAF) = 0	X(FAF) = 1	Y(FAF) = 1	Z(FAF) = 1 - 2 = -1
		X(FFA) = 1	· · · ·	Z(FFA) = 1 - 2 = -1
	W(FFF) = 0	X(FFF) = 0	Y(FFF) = 0	Z(FFF) = 0 - 3 = -3
$\therefore p_Z(k) = \begin{cases} 1/8 & \text{, if } k = -3 \\ 3/8 & \text{, if } k = -1 \\ 3/8 & \text{, if } k = 1 \\ 1/8 & \text{, if } k = 3 \end{cases} \text{OR} \frac{k \ -3 \ -1 \ \ 1 \ \ 3}{p_Z(k) \ \ 1/8 \ 3/8 \ 3/8 \ 1/8}$				

Verification of pmf's

$$\frac{k}{p_W(k)} \frac{0}{1/2} \frac{1}{1/2} \sum_{k \in \text{Supp}(W)} p_W(k) = p_W(0) + p_W(1) = \frac{1}{2} + \frac{1}{2} = 1 \checkmark$$

$$\frac{k}{p_X(k)} \frac{0}{1/8} \frac{1}{7/8} \sum_{k \in \text{Supp}(X)} p_X(k) = p_X(0) + p_X(1) = \frac{1}{8} + \frac{7}{8} = 1 \checkmark$$

$$\frac{k}{p_Y(k)} \frac{0}{1/8} \frac{1}{3/8} \frac{2}{3/8} \frac{3}{1/8}$$

$$\sum_{k \in \text{Supp}(Y)} p_Y(k) = p_Y(0) + p_Y(1) + p_Y(2) + p_Y(3) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1 \checkmark$$

$$\frac{k}{p_Z(k)} \frac{-3}{1/8} \frac{-1}{1/8} \frac{1}{3/8} \frac{3}{3/8} \frac{3}{1/8}$$

$$\sum_{k \in \text{Supp}(Z)} p_Z(k) = p_Z(-3) + p_Z(-1) + p_Z(1) + p_Z(3) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1 \checkmark$$

Cumulative Density Function (cdf) of a Discrete r.v.

Definition

(cdf of a Discrete Random Variable)

Let *X* be a **discrete** random variable s.t. Supp(*X*) = { k_1, k_2, k_3, \dots } Then, its **cdf**, denoted as $F_X(x)$, is defined as follows:

$$F_X(x) := \mathbb{P}(X \le x) = \sum_{k_i \le x} p_X(k_i) \ \forall x \in \mathbb{R}$$

Corollary

(cdf Axioms)

Let *X* be a **discrete** random variable. Then, its **cdf** $F_X(x)$, satisfies

Eventually Zero (One) to the Left (Right): $\lim_{x \to -\infty} F_X(x) = 0$, $\lim_{x \to +\infty} F_X(x) = 1$ Non-decreasing: $x_1 \le x_2 \implies F_X(x_1) \le F_X(x_2)$ Right-continuous: $\lim_{x \downarrow x_0} F_X(x) = F_X(x_0) \quad \forall x_0 \in \mathbb{R}$ Piecewise Constant:(AKA step function)

Computing cdf's from pmf's

$$p_{W}(k) = \begin{cases} 1/2 & \text{, if } k = 0 \\ 1/2 & \text{, if } k = 1 \end{cases} \implies F_{W}(x) = \begin{cases} 0 & \text{, if } x < 0 \\ \frac{1}{2} & \text{, if } 0 \le x < 1 \\ \frac{1}{2} + \frac{1}{2} & \text{, if } 1 \le x \end{cases}$$

$$p_{X}(k) = \begin{cases} 1/8 & \text{, if } k = 0 \\ 7/8 & \text{, if } k = 1 \end{cases} \implies F_{X}(x) = \begin{cases} 0 & \text{, if } x < 0 \\ \frac{1}{8} & \text{, if } 0 \le x < 1 \\ \frac{1}{8} + \frac{7}{8} & \text{, if } 1 \le x \end{cases}$$

$$p_{Y}(k) = \begin{cases} 1/8 & \text{, if } k = 0 \\ 3/8 & \text{, if } k = 1 \\ 3/8 & \text{, if } k = 2 \\ 1/8 & \text{, if } k = 3 \end{cases} \implies F_{Y}(x) = \begin{cases} 0 & \text{, if } x < 0 \\ \frac{1}{8} + \frac{3}{8} & \text{, if } 1 \le x \end{cases}$$

$$p_{Z}(k) = \begin{cases} 1/8 & \text{, if } k = -3 \\ 3/8 & \text{, if } k = -1 \\ 3/8 & \text{, if } k = 1 \\ 1/8 & \text{, if } k = 3 \end{cases} \implies F_{Z}(x) = \begin{cases} 0 & \text{, if } x < -3 \\ \frac{1}{8} + \frac{3}{8} + \frac{3}{8} & \text{, if } -3 \le x < -1 \\ \frac{1}{8} + \frac{3}{8} + \frac{3}{8} & \text{, if } 1 \le x < 2 \\ \frac{1}{8} + \frac{3}{8} + \frac{3}{8} & \text{, if } -3 \le x < -1 \\ \frac{1}{8} + \frac{3}{8} + \frac{3}{8} & \text{, if } 1 \le x < 2 \\ \frac{1}{8} + \frac{3}{8} + \frac{3}{8} & \text{, if } -3 \le x < -1 \\ \frac{1}{8} + \frac{3}{8} + \frac{3}{8} & \text{, if } 1 \le x < 1 \\ \frac{1}{8} + \frac{3}{8} + \frac{3}{8} & \text{, if } -1 \le x < 1 \\ \frac{1}{8} + \frac{3}{8} + \frac{3}{8} & \text{, if } 1 \le x < 3 \\ 1 & \text{, if } 3 \le x \end{cases}$$

Josh Engwer (TTU)

Computing cdf's from pmf's

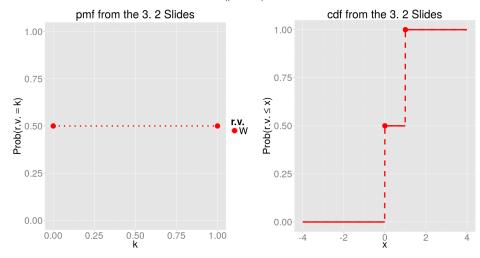
$$p_W(k) = \begin{cases} 1/2 & \text{, if } k = 0 \\ 1/2 & \text{, if } k = 1 \end{cases} \implies F_W(x) = \begin{cases} 0 & \text{, if } x < 0 \\ 1/2 & \text{, if } 0 \le x < 1 \\ 1 & \text{, if } 1 \le x \end{cases}$$

$$p_X(k) = \begin{cases} 1/8 & \text{, if } k = 0 \\ 7/8 & \text{, if } k = 1 \end{cases} \implies F_X(x) = \begin{cases} 0 & \text{, if } x < 0 \\ 1/8 & \text{, if } 0 \le x < 1 \\ 1 & \text{, if } 1 \le x \end{cases}$$

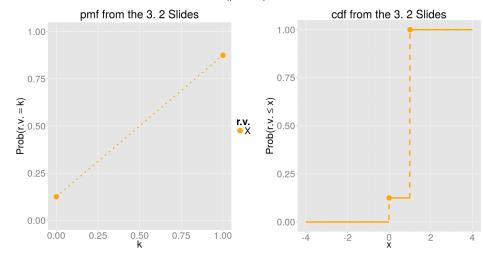
$$p_Y(k) = \begin{cases} 1/8 & \text{, if } k = 0 \\ 3/8 & \text{, if } k = 1 \\ 3/8 & \text{, if } k = 2 \\ 1/8 & \text{, if } k = 3 \end{cases} \implies F_Y(x) = \begin{cases} 0 & \text{, if } x < 0 \\ 1/8 & \text{, if } 0 \le x < 1 \\ 1/2 & \text{, if } 1 \le x < 2 \\ 7/8 & \text{, if } 2 \le x < 3 \\ 1 & \text{, if } 3 \le x \end{cases}$$

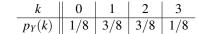
$$p_{Z}(k) = \begin{cases} 1/8 & \text{, if } k = -3 \\ 3/8 & \text{, if } k = -1 \\ 3/8 & \text{, if } k = 1 \\ 1/8 & \text{, if } k = 3 \end{cases} \implies F_{Z}(x) = \begin{cases} 0 & \text{, if } x < -3 \\ 1/8 & \text{, if } -3 \le x < -1 \\ 1/2 & \text{, if } -1 \le x < 1 \\ 7/8 & \text{, if } 1 \le x < 3 \\ 1 & \text{, if } 3 \le x \end{cases}$$

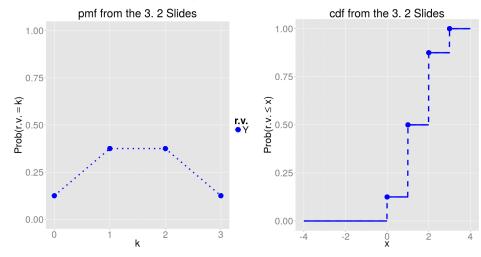
$$\begin{array}{c|cc} k & 0 & 1 \\ \hline p_W(k) & 1/2 & 1/2 \\ \end{array}$$

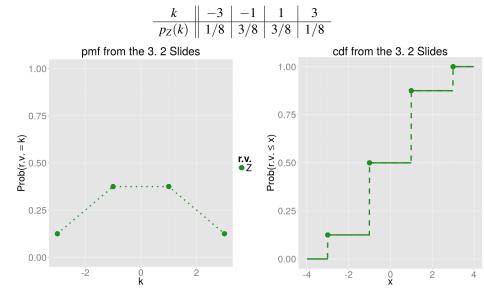


$$\begin{array}{c|cc} k & 0 & 1 \\ \hline p_X(k) & 1/8 & 7/8 \\ \end{array}$$









Computing Probabilities using a Discrete cdf

Theorem

Let *X* be a **discrete** *r.v.* with cdf $F_X(x)$. Let scalars $a, b \in \mathbb{R}$ s.t. a < b. Then:

$$\mathbb{P}(X \le a) = F_X(a) \mathbb{P}(X < a) = F_X(a-)$$

$$\mathbb{P}(X \ge b) = 1 - F_X(b-) \mathbb{P}(X > b) = 1 - F_X(b)$$

$$\mathbb{P}(X=a) = F_X(a) - F_X(a-)$$

where:

"a - " represents the **largest** $k \in \text{Supp}(X)$ such that k < a"b - " represents the **largest** $k \in \text{Supp}(X)$ such that k < b

Comparison of Probabilities via pmf v.s. cdf

$$p_Y(k) = \begin{cases} 1/8 & \text{, if } k = 0 \\ 3/8 & \text{, if } k = 1 \\ 3/8 & \text{, if } k = 2 \\ 1/8 & \text{, if } k = 3 \end{cases} \implies F_Y(x) = \begin{cases} 0 & \text{, if } x < 0 \\ 1/8 & \text{, if } 0 \le x < 1 \\ 1/2 & \text{, if } 1 \le x < 2 \\ 7/8 & \text{, if } 2 \le x < 3 \\ 1 & \text{, if } 3 \le x \end{cases}$$

$$\mathbb{P}(Y \le 2) = p_Y(0) + p_Y(1) + p_Y(2) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$$
$$\mathbb{P}(Y \le 2) = F_Y(2) = \frac{7}{8}$$

$$\mathbb{P}(Y < 2) = p_Y(0) + p_Y(1) = \frac{1}{8} + \frac{3}{8} = \frac{1}{2}$$
$$\mathbb{P}(Y < 2) = F_Y(2-) = F_Y(1) = \frac{1}{2}$$

$$\mathbb{P}(1 < Y \le 3) = p_Y(2) + p_Y(3) = \frac{3}{8} + \frac{1}{8} = \frac{1}{2}$$
$$\mathbb{P}(1 < Y \le 3) = F_Y(3) - F_Y(1) = 1 - \frac{1}{2} = \frac{1}{2}$$

Josh Engwer (TTU)

Comparison of Probabilities via pmf v.s. cdf

$$p_Y(k) = \begin{cases} 1/8 & \text{, if } k = 0 \\ 3/8 & \text{, if } k = 1 \\ 3/8 & \text{, if } k = 2 \\ 1/8 & \text{, if } k = 3 \end{cases} \implies F_Y(x) = \begin{cases} 0 & \text{, if } x < 0 \\ 1/8 & \text{, if } 0 \le x < 1 \\ 1/2 & \text{, if } 1 \le x < 2 \\ 7/8 & \text{, if } 2 \le x < 3 \\ 1 & \text{, if } 3 \le x \end{cases}$$

$$\mathbb{P}(Y \ge 2) = p_Y(2) + p_Y(3) = \frac{3}{8} + \frac{1}{8} = \frac{1}{2}$$
$$\mathbb{P}(Y \ge 2) = 1 - F_Y(2-) = 1 - F_Y(1) = 1 - \frac{1}{2} = \frac{1}{2}$$

$$\mathbb{P}(Y > 2) = p_Y(3) = \frac{1}{8}$$
$$\mathbb{P}(Y > 2) = 1 - F_Y(2) = 1 - \frac{7}{8} = \frac{1}{8}$$

$$\mathbb{P}(1 \le Y < 3) = p_Y(1) + p_Y(2) = \frac{3}{8} + \frac{3}{8} = \frac{3}{4}$$
$$\mathbb{P}(1 \le Y < 3) = F_Y(3-) - F_Y(1-) = F_Y(2) - F_Y(0) = \frac{7}{8} - \frac{1}{8} = \frac{3}{4}$$

Josh Engwer (TTU)

Comparison of Probabilities via pmf v.s. cdf

$$p_Y(k) = \begin{cases} 1/8 & \text{, if } k = 0 \\ 3/8 & \text{, if } k = 1 \\ 3/8 & \text{, if } k = 2 \\ 1/8 & \text{, if } k = 3 \end{cases} \implies F_Y(x) = \begin{cases} 0 & \text{, if } x < 0 \\ 1/8 & \text{, if } 0 \le x < 1 \\ 1/2 & \text{, if } 1 \le x < 2 \\ 7/8 & \text{, if } 2 \le x < 3 \\ 1 & \text{, if } 3 \le x \end{cases}$$

$$\mathbb{P}(Y=2) = p_Y(2) = \frac{5}{8}$$
$$\mathbb{P}(Y=2) = F_Y(2) - F_Y(2) - F_Y(1) = \frac{7}{8} - \frac{1}{2} = \frac{3}{8}$$

2

$$\mathbb{P}(Y = 2.5) = p_Y(2.5) = 0 \qquad [\text{Since } 2.5 \notin \text{Supp}(Y)] \\ \mathbb{P}(Y = 2.5) = F_Y(2.5) - F_Y(2.5-) = F_Y(2.5) - F_Y(2) = \frac{7}{8} - \frac{7}{8} = 0$$

Textbook Logistics for Section 3.2

• Difference(s) in Terminology:

TEXTBOOK TERMINOLOGY	SLIDES/OUTLINE TERMINOLOGY
Null Event Ø	Empty Set Ø
Number of Outcomes in E	Measure of E

• Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Sample Space	S	Ω
Probability of Event	P(A)	$\mathbb{P}(A)$
Measure of Event	N(A)	A
Support of a r.v.	"All possible values of X"	Supp(X)
Support of a r.v.	D	Supp(X)
pmf of a r.v.	p(x)	$p_X(k)$
cdf of a r.v.	F(x)	$F_X(x)$

Josh Engwer (TTU)

- Skip Parameter(s) of a Probability Distribution (pg 103)
 - Parameters are often associated with pmf's of well-known random variables
 - Parameters will be covered in Sections 3.4 & 3.6
 - Parameters also occur with continuous random variables, and hence will also be covered in Ch4.

Fin.