Discrete r.v.'s: pmf's \& cdf's

Engineering Statistics

Section 3.2

Josh Engwer

TTU
17 February 2016

Probability Mass Function (pmf) of a Discrete r.v.

The pmf assigns a probability to each possible value of a discrete r.v.:

Definition

(pmf of a Discrete Random Variable)
Let X be a discrete random variable.
Then, its pmf, denoted as $p_{X}(k)$, is defined as follows:

$$
p_{X}(k):=\mathbb{P}(X=k) \quad \forall k \in \operatorname{Supp}(X)
$$

Corollary

(pmf Axioms)
Let X be a discrete random variable. Then, its pmf $p_{X}(k)$ satisfies
Non-negativity on its Support: $\quad p_{X}(k) \geq 0 \quad \forall k \in \operatorname{Supp}(X)$
Universal Sum of Unity: $\quad \sum_{k \in \operatorname{Supp}(X)} p_{X}(k)=1$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No $)$
Let random variables $X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$W(A A A)=1$	$X(A A A)=1$	$Y(A A A)=3$	$Z(A A A)=3-0$	$=$	3
$W(A A F)=0$	$X(A A F)=1$	$Y(A A F)=2$	$Z(A A F)=2-1$	$=$	1
$W(A F A)=1$	$X(A F A)=1$	$Y(A F A)=2$	$Z(A F A)=2-1$	$=$	1
$W(A F F)=0$	$X(A F F)=1$	$Y(A F F)=1$	$Z(A F F)=1-2=$	-1	
$W(F A A)=1$	$X(F A A)=1$	$Y(F A A)=2$	$Z(F A A)=2-1$	$=$	1
$W(F A F)=0$	$X(F A F)=1$	$Y(F A F)=1$	$Z(F A F)=1-2=$	$=1$	
$W(F F A)=1$	$X(F F A)=1$	$Y(F F A)=1$	$Z(F F A)=1-2$	$=$	-1
$W(F F F)=0$	$X(F F F)=0$	$Y(F F F)=0$	$Z(F F F)=0-3$	$=$	-3

Supp(W)		$\{0,1\}$		e
Supp (X)	$=$	$\{0,1\}$	\cdots	$\operatorname{Supp}(X)$ is countable
Supp (Y)	$=$	$\{0,1,2,3\}$		$\operatorname{Supp}(Y)$ is countable $\Longrightarrow Y$ is discrete
Supp(Z)	$=$	$\{-3,-1,1,3\}$	-	$\operatorname{Supp}(Z)$ is countable

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables $X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats
$W(A A A)=1 \quad X(A A A)=1 \quad Y(A A A)=3 \quad Z(A A A)=3-0=3$
$\mathbf{W}(\mathrm{AAF})=0 \quad X(A A F)=1 \quad Y(A A F)=2 \quad Z(A A F)=2-1 \quad=\quad 1$
$W(A F A)=1 \quad X(A F A)=1 \quad Y(A F A)=2 \quad Z(A F A)=2-1 \quad=1$
$\mathbf{W}(\mathrm{AFF})=0 \quad X(A F F)=1 \quad Y(A F F)=1 \quad Z(A F F)=1-2=-1$
$W(F A A)=1 \quad X(F A A)=1 \quad Y(F A A)=2 \quad Z(F A A)=2-1=1$
$\mathrm{W}(\mathrm{FAF})=0 \quad X(F A F)=1 \quad Y(F A F)=1 \quad Z(F A F)=1-2 \quad=-1$
$W(F F A)=1 \quad X(F F A)=1 \quad Y(F F A)=1 \quad Z(F F A)=1-2 \quad=-1$
$\mathbf{W}(F F F)=0 \quad X(F F F)=0 \quad Y(F F F)=0 \quad Z(F F F)=0-3=-3$

$$
p_{W}(\mathbf{0})=\mathbb{P}(\mathbf{W}=\mathbf{0})=\mathbb{P}(\omega \in\{\mathbf{A A F}, \mathbf{A F F}, \mathbf{F A F}, \mathbf{F F F}\})=\frac{4}{8}=\frac{1}{2}
$$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables $X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$$
\begin{array}{lllllr}
\mathrm{W}(\mathrm{AAA})=1 & X(A A A)=1 & Y(A A A)=3 & Z(A A A)=3-0= & 3 \\
W(A A F)=0 & X(A A F)=1 & Y(A A F)=2 & Z(A A F)=2-1= & 1 \\
\mathrm{~W}(A F A)=1 & X(A F A)=1 & Y(A F A)=2 & Z(A F A)=2-1= & =1 \\
W(A F F)=0 & X(A F F)=1 & Y(A F F)=1 & Z(A F F)=1-2= & -1 \\
\text { W(FAA) =1 } & X(F A A)=1 & Y(F A A)=2 & Z(F A A)=2-1=1 \\
W(F A F)=0 & X(F A F)=1 & Y(F A F)=1 & Z(F A F)=1-2= & -1 \\
\text { W(FFA) =1 } & X(F F A)=1 & Y(F F A)=1 & Z(F F A)=1-2=-1 \\
W(F F F)=0 & X(F F F)=0 & Y(F F F)=0 & Z(F F F)=0-3=- & -1
\end{array}
$$

$$
p_{W}(\mathbf{1})=\mathbb{P}(\mathbf{W}=\mathbf{1})=\mathbb{P}(\omega \in\{\mathbf{A A A}, \mathbf{A F A}, \mathbf{F A A}, \mathbf{F F A}\})=\frac{4}{8}=\frac{1}{2}
$$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables
$X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$$
\begin{array}{lllllr}
W(A A A)=1 & X(A A A)=1 & Y(A A A)=3 & Z(A A A)=3-0= & 3 \\
W(A A F)=0 & X(A A F)=1 & Y(A A F)=2 & Z(A A F)=2-1= & 1 \\
W(A F A)=1 & X(A F A)=1 & Y(A F A)=2 & Z(A F A)=2-1= & =1 \\
W(A F F)=0 & X(A F F)=1 & Y(A F F)=1 & Z(A F F)=1-2= & -1 \\
W(F A A)=1 & X(F A A)=1 & Y(F A A)=2 & Z(F A A)=2-1=1 \\
W(F A F)=0 & X(F A F)=1 & Y(F A F)=1 & Z(F A F)=1-2= & -1 \\
W(F F A)=1 & X(F F A)=1 & Y(F F A)=1 & Z(F F A)=1-2=-1 \\
W(F F F)=0 & X(F F F)=0 & Y(F F F)=0 & Z(F F F)=0-3= & =-3
\end{array}
$$

$\therefore \quad p_{W}(k)=\left\{\begin{array}{cl}1 / 2 & , \text { if } k=0 \\ 1 / 2 & \text {, if } k=1\end{array} \quad\right.$ OR $\quad \begin{array}{c||c|c}k & 0 & 1 \\ \hline p_{W}(k) & 1 / 2 & 1 / 2\end{array}$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables
$X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$$
\begin{array}{llllll}
W(A A A)=1 & X(A A A)=1 & Y(A A A)=3 & Z(A A A)=3-0 & = & 3 \\
W(A A F)=0 & X(A A F)=1 & Y(A A F)=2 & Z(A A F)=2-1= & 1 \\
W(A F A)=1 & X(A F A)=1 & Y(A F A)=2 & Z(A F A)=2-1=1 & =1 \\
W(A F F)=0 & X(A F F)=1 & Y(A F F)=1 & Z(A F F)=1-2=-1 \\
W(F A A)=1 & X(F A A)=1 & Y(F A A)=2 & Z(F A A)=2-1= & =1 \\
W(F A F)=0 & X(F A F)=1 & Y(F A F)=1 & Z(F A F)=1-2=-1 \\
W(F F A)=1 & X(F F A)=1 & Y(F F A)=1 & Z(F F A)=1-2=-1 \\
W(F F F)=0 & \text { X(FFF)=0} & Y(F F F)=0 & Z(F F F)=0-3=-3
\end{array}
$$

$$
p_{X}(\mathbf{0})=\mathbb{P}(\mathbf{X}=\mathbf{0})=\mathbb{P}(\omega \in\{\mathbf{F F F}\})=\frac{|\{F F F\}|}{|\Omega|}=\frac{1}{8}
$$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables $X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$p_{X}(\mathbf{1})=\mathbb{P}(\mathbf{X}=\mathbf{1})=\mathbb{P}(\omega \in\{\mathbf{A A A}, \mathbf{A A F}, \mathbf{A F A}, \mathbf{A F F}, \mathrm{FAA}, \mathrm{FAF}, \mathrm{FFA}\})=\frac{7}{8}$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables
$X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$$
\begin{array}{lllllr}
W(A A A)=1 & X(A A A)=1 & Y(A A A)=3 & Z(A A A)=3-0= & 3 \\
W(A A F)=0 & X(A A F)=1 & Y(A A F)=2 & Z(A A F)=2-1= & 1 \\
W(A F A)=1 & X(A F A)=1 & Y(A F A)=2 & Z(A F A)=2-1= & 1 \\
W(A F F)=0 & X(A F F)=1 & Y(A F F)=1 & Z(A F F)=1-2= & -1 \\
W(F A A)=1 & X(F A A)=1 & Y(F A A)=2 & Z(F A A)=2-1= & 1 \\
W(F A F)=0 & X(F A F)=1 & Y(F A F)=1 & Z(F A F)=1-2=1 \\
W(F F A)=1 & X(F F A)=1 & Y(F F A)=1 & Z(F F A)=1-2=-1 \\
W(F F F)=0 & X(F F F)=0 & Y(F F F)=0 & Z(F F F)=0-3= & -1 \\
\end{array}
$$

$$
\therefore \quad p_{X}(k)=\left\{\begin{array}{cl}
1 / 8 & , \text { if } k=0 \\
7 / 8 & \text {, if } k=1
\end{array} \quad \text { OR } \quad \begin{array}{c||c|c}
k & 0 & 1 \\
\hline p_{X}(k) & 1 / 8 & 7 / 8
\end{array}\right.
$$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables
$X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$$
\begin{array}{llllll}
W(A A A)=1 & X(A A A)=1 & Y(A A A)=3 & Z(A A A)=3-0 & = & 3 \\
W(A A F)=0 & X(A A F)=1 & Y(A A F)=2 & Z(A A F)=2-1= & 1 \\
W(A F A)=1 & X(A F A)=1 & Y(A F A)=2 & Z(A F A)=2-1 & = & 1 \\
W(A F F)=0 & X(A F F)=1 & Y(A F F)=1 & Z(A F F)=1-2= & -1 \\
W(F A A)=1 & X(F A A)=1 & Y(F A A)=2 & Z(F A A)=2-1= & =1 \\
W(F A F)=0 & X(F A F)=1 & Y(F A F)=1 & Z(F A F)=1-2= & -1 \\
W(F F A)=1 & X(F F A)=1 & Y(F F A)=1 & Z(F F A)=1-2=-1 \\
W(F F F)=0 & X(F F F)=0 & Y(F F F)=0 & Z(F F F)=0-3=-3
\end{array}
$$

$$
p_{Y}(\mathbf{0})=\mathbb{P}(\mathbf{Y}=\mathbf{0})=\mathbb{P}(\omega \in\{\mathbf{F F F}\})=\frac{|\{F F F\}|}{|\Omega|}=\frac{1}{8}
$$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables $X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$$
\begin{array}{lllllr}
W(A A A)=1 & X(A A A)=1 & Y(A A A)=3 & Z(A A A)=3-0= & 3 \\
W(A A F)=0 & X(A A F)=1 & Y(A A F)=2 & Z(A A F)=2-1= & 1 \\
W(A F A)=1 & X(A F A)=1 & Y(A F A)=2 & Z(A F A)=2-1= & =1 \\
W(A F F)=0 & X(A F F)=1 & Y(\mathbf{A F F})=1 & Z(A F F)=1-2=-1 \\
W(F A A)=1 & X(F A A)=1 & Y(F A A)=2 & Z(F A A)=2-1=1 & -1 \\
W(F A F)=0 & X(F A F)=1 & Y(F A F)=1 & Z(F A F)=1-2=-1 \\
W(F F A)=1 & X(F F A)=1 & Y(F F A)=1 & Z(F F A)=1-2=-1 \\
W(F F F)=0 & X(F F F)=0 & Y(F F F)=0 & Z(F F F)=0-3=-3
\end{array}
$$

$$
p_{Y}(\mathbf{1})=\mathbb{P}(\mathbf{Y}=\mathbf{1})=\mathbb{P}(\omega \in\{\mathbf{A F F}, \mathbf{F A F}, \mathbf{F F A}\})=\frac{3}{8}
$$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables $X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$$
\begin{array}{lllllr}
W(A A A)=1 & X(A A A)=1 & Y(A A A)=3 & Z(A A A)=3-0= & 3 \\
W(A A F)=0 & X(A A F)=1 & \text { Y(AAF) = } & Z(A A F)=2-1= & 1 \\
W(A F A)=1 & X(A F A)=1 & \text { Y(AFA) =2 } & Z(A F A)=2-1= & =1 \\
W(A F F)=0 & X(A F F)=1 & Y(A F F)=1 & Z(A F F)=1-2= & -1 \\
W(F A A)=1 & X(F A A)=1 & \text { Y(FAA) = 2 } & Z(F A A)=2-1= & 1 \\
W(F A F)=0 & X(F A F)=1 & Y(F A F)=1 & Z(F A F)=1-2=1 \\
W(F F A)=1 & X(F F A)=1 & Y(F F A)=1 & Z(F F A)=1-2=-1 \\
W(F F F)=0 & X(F F F)=0 & Y(F F F)=0 & Z(F F F)=0-3=-1 \\
\end{array}
$$

$$
p_{Y}(\mathbf{2})=\mathbb{P}(\mathbf{Y}=\mathbf{2})=\mathbb{P}(\omega \in\{\mathbf{A A F}, \mathbf{A F A}, \mathbf{F A A}\})=\frac{3}{8}
$$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables
$X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$$
\begin{array}{lllllr}
W(A A A)=1 & X(A A A)=1 & Y(A A A)=3 & Z(A A A)=3-0 & = & 3 \\
W(A A F)=0 & X(A A F)=1 & Y(A A F)=2 & Z(A A F)=2-1= & 1 \\
W(A F A)=1 & X(A F A)=1 & Y(A F A)=2 & Z(A F A)=2-1= & =1 \\
W(A F F)=0 & X(A F F)=1 & Y(A F F)=1 & Z(A F F)=1-2= & -1 \\
W(F A A)=1 & X(F A A)=1 & Y(F A A)=2 & Z(F A A)=2-1=1 & =1 \\
W(F A F)=0 & X(F A F)=1 & Y(F A F)=1 & Z(F A F)=1-2=1 \\
W(F F A)=1 & X(F F A)=1 & Y(F F A)=1 & Z(F F A)=1-2=-1 \\
W(F F F)=0 & X(F F F)=0 & Y(F F F)=0 & Z(F F F)=0-3=-1
\end{array}
$$

$$
p_{Y}(\mathbf{3})=\mathbb{P}(\mathbf{Y}=\mathbf{3})=\mathbb{P}(\omega \in\{\mathbf{A A A}\})=\frac{|\{A A A\}|}{|\Omega|}=\frac{1}{8}
$$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{\text {rd }}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables
$X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$W(A A A)=1$	$X(A A A)=1$	$Y(A A A)=3$	$Z(A A A)=3-0$	$=$	3
$W(A A F)=0$	$X(A A F)=1$	$Y(A A F)=2$	$Z(A A F)=2-1$	$=$	1
$W(A F A)=1$	$X(A F A)=1$	$Y(A F A)=2$	$Z(A F A)=2-1$	$=$	1
$W(A F F)=0$	$X(A F F)=1$	$Y(A F F)=1$	$Z(A F F)=1-2=$	-1	
$W(F A A)=1$	$X(F A A)=1$	$Y(F A A)=2$	$Z(F A A)=2-1$	$=$	1
$W(F A F)=0$	$X(F A F)=1$	$Y(F A F)=1$	$Z(F A F)=1-2=$	-1	
$W(F F A)=1$	$X(F F A)=1$	$Y(F F A)=1$	$Z(F F A)=1-2=$	$=-1$	
$W(F F F)=0$	$X(F F F)=0$	$Y(F F F)=0$	$Z(F F F)=0-3$	$=-3$	

$$
\therefore \quad p_{Y}(k)= \begin{cases}1 / 8 & , \text { if } k=0 \\ 3 / 8 & , \text { if } k=1 \\ 3 / 8 & , \text { if } k=2 \\ 1 / 8 & , \text { if } k=3\end{cases}
$$

OR

k	0	1	2	3
$p_{Y}(k)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables
$X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$$
\begin{array}{lllllr}
W(A A A)=1 & X(A A A)=1 & Y(A A A)=3 & Z(A A A)=3-0= & =3 \\
W(A A F)=0 & X(A A F)=1 & Y(A A F)=2 & Z(A A F)=2-1= & =1 \\
W(A F A)=1 & X(A F A)=1 & Y(A F A)=2 & Z(A F A)=2-1= & =1 \\
W(A F F)=0 & X(A F F)=1 & Y(A F F)=1 & Z(A F F)=1-2=-1 \\
W(F A A)=1 & X(F A A)=1 & Y(F A A)=2 & Z(F A A)=2-1= & -1 \\
W(F A F)=0 & X(F A F)=1 & Y(F A F)=1 & Z(F A F)=1-2=-1 \\
W(F F A)=1 & X(F F A)=1 & Y(F F A)=1 & Z(F F A)=1-2=-1 \\
W(F F F)=0 & X(F F F)=0 & Y(F F F)=0 & Z(F F F)=0-3=- & -3
\end{array}
$$

$$
p_{Z}(-\mathbf{3})=\mathbb{P}(\mathbf{Z}=\mathbf{- 3})=\mathbb{P}(\omega \in\{\mathbf{F F F}\})=\frac{|\{F F F\}|}{|\Omega|}=\frac{1}{8}
$$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables $X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$$
\begin{aligned}
& W(A A A)=1 \quad X(A A A)=1 \quad Y(A A A)=3 \quad Z(A A A)=3-0 \quad=\quad 3 \\
& W(A A F)=0 \quad X(A A F)=1 \quad Y(A A F)=2 \quad Z(A A F)=2-1 \quad=\quad 1 \\
& W(A F A)=1 \quad X(A F A)=1 \quad Y(A F A)=2 \quad Z(A F A)=2-1 \quad=1 \\
& W(A F F)=0 \quad X(A F F)=1 \quad Y(A F F)=1 \quad \mathbf{Z}(\mathbf{A F F})=1-2=-1 \\
& W(F A A)=1 \quad X(F A A)=1 \quad Y(F A A)=2 \quad Z(F A A)=2-1=1 \\
& W(F A F)=0 \quad X(F A F)=1 \quad Y(F A F)=1 \quad Z(\text { FAF })=1-2 \quad=-1 \\
& W(F F A)=1 \quad X(F F A)=1 \quad Y(F F A)=1 \quad \mathbf{Z}(\text { FFA })=1-2 \quad=-1 \\
& W(F F F)=0 \quad X(F F F)=0 \quad Y(F F F)=0 \quad Z(F F F)=0-3=-3
\end{aligned}
$$

$$
p_{Z}(-1)=\mathbb{P}(\mathbf{Z}=-1)=\mathbb{P}(\omega \in\{\mathbf{A F F}, \mathrm{FAF}, \mathrm{FFA}\})=\frac{3}{8}
$$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables $X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

A) $=1$	$X(A A A)=1$	$Y(A A A)=3$	$Z(A A A)=3-0$	
$W(A A F)=0$	$X(A A F)=1$	$Y(A A F)=2$	$\mathbf{Z}(\mathbf{A A F})=2-1$	
$W(A F A)=1$	$X(A F A)=1$	$Y(A F A)=2$	$\mathbf{Z}(\mathbf{A F A})=2-1$	
$W(A F F)=0$	$X(A F F)=1$	$Y(A F F)=1$	$Z(A F F)=1-2$	
$W(F A A)=1$	$X(F A A)=1$	$Y(F A A)=2$	$\mathbf{Z}(\mathrm{FAA})=2-1$	
$W(F A F)=0$	$X(F A F)=1$	$Y(F A F)=1$	$Z(F A F)=1-2$	
$W(F F A)=1$	$X(F F A)=1$	$Y(F F A)=1$	$Z(F F A)=1-2$	
$W(F F F)=0$	$X(F F F)=0$	$Y(F F F)=0$	$Z(F F F)=0-3$	

$$
p_{Z}(\mathbf{1})=\mathbb{P}(\mathbf{Z}=\mathbf{1})=\mathbb{P}(\omega \in\{\mathbf{A A F}, \mathbf{A F A}, \mathbf{F A A}\})=\frac{3}{8}
$$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables
$X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$W(A A A)=1$	$X(A A A)=1$	$Y(A A A)=3$	$Z(A A A)=3-0$	$=$	3
$W(A A F)=0$	$X(A A F)=1$	$Y(A A F)=2$	$Z(A A F)=2-1$	$=$	1
$W(A F A)=1$	$X(A F A)=1$	$Y(A F A)=2$	$Z(A F A)=2-1$	$=$	1
$W(A F F)=0$	$X(A F F)=1$	$Y(A F F)=1$	$Z(A F F)=1-2=$	-1	
$W(F A A)=1$	$X(F A A)=1$	$Y(F A A)=2$	$Z(F A A)=2-1$	$=$	1
$W(F A F)=0$	$X(F A F)=1$	$Y(F A F)=1$	$Z(F A F)=1-2=$	-1	
$W(F F A)=1$	$X(F F A)=1$	$Y(F F A)=1$	$Z(F F A)=1-2=$	-1	
$W(F F F)=0$	$X(F F F)=0$	$Y(F F F)=0$	$Z(F F F)=0-3=$	-3	

$$
p_{Z}(\mathbf{3})=\mathbb{P}(\mathbf{Z}=\mathbf{3})=\mathbb{P}(\omega \in\{\mathbf{A A A}\})=\frac{|\{A A A\}|}{|\Omega|}=\frac{1}{8}
$$

pmf of a Discrete Random Variable (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A) Sample Space: $\Omega=\{A A A, A A F, A F A, A F F, F A A, F A F, F F A, F F F\}$
$W \equiv$ If $3^{r d}$ seat in car is available ($1=$ Yes, $0=$ No)
Let random variables
$X \equiv$ If car has any available seats ($1=$ Yes, $0=$ No)
$Y \equiv$ Number of available seats in car
$Z \equiv$ Difference in \# of available and occupied seats

$$
\begin{array}{lllllr}
W(A A A)=1 & X(A A A)=1 & Y(A A A)=3 & Z(A A A)=3-0= & 3 \\
W(A A F)=0 & X(A A F)=1 & Y(A A F)=2 & Z(A A F)=2-1= & 1 \\
W(A F A)=1 & X(A F A)=1 & Y(A F A)=2 & Z(A F A)=2-1= & =1 \\
W(A F F)=0 & X(A F F)=1 & Y(A F F)=1 & Z(A F F)=1-2=-1 \\
W(F A A)=1 & X(F A A)=1 & Y(F A A)=2 & Z(F A A)=2-1= & -1 \\
W(F A F)=0 & X(F A F)=1 & Y(F A F)=1 & Z(F A F)=1-2=-1 \\
W(F F A)=1 & X(F F A)=1 & Y(F F A)=1 & Z(F F A)=1-2=-1 \\
W(F F F)=0 & X(F F F)=0 & Y(F F F)=0 & Z(F F F)=0-3=- & -1
\end{array}
$$

$$
\therefore p_{Z}(k)=\left\{\begin{aligned}
1 / 8 & , \text { if } k=-3 \\
3 / 8 & , \text { if } k=-1 \\
3 / 8 & , \text { if } k=1 \\
1 / 8 & \text {, if } k=3
\end{aligned} \quad \text { OR } \quad \begin{array}{c||c|c|c|c}
k & -3 & -1 & 1 & 3 \\
\hline p_{Z}(k) & 1 / 8 & 3 / 8 & 3 / 8 & 1 / 8
\end{array}\right.
$$

Verification of pmf's

$$
\sum_{k \in \operatorname{Supp}(W)} p_{W}(k)=p_{W}(0)+p_{W}(1)=\frac{1}{2}+\frac{1}{2}=1 \checkmark
$$

k	0	1
$p_{X}(k)$	$1 / 8$	$7 / 8$

$\sum_{k \in \operatorname{Supp}(X)} p_{X}(k)=p_{X}(0)+p_{X}(1)=\frac{1}{8}+\frac{7}{8}=1$

k	0	1	2	3
$p_{Y}(k)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

$$
\sum_{k \in \operatorname{Supp}(Y)} p_{Y}(k)=p_{Y}(0)+p_{Y}(1)+p_{Y}(2)+p_{Y}(3)=\frac{1}{8}+\frac{3}{8}+\frac{3}{8}+\frac{1}{8}=1 \checkmark
$$

k	-3	-1	1	3
$p_{Z}(k)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

$\sum_{k \in \operatorname{Supp}(Z)} p_{Z}(k)=p_{Z}(-3)+p_{Z}(-1)+p_{Z}(1)+p_{Z}(3)=\frac{1}{8}+\frac{3}{8}+\frac{3}{8}+\frac{1}{8}=1 \quad \checkmark$

Cumulative Density Function (cdi) of a Discrete r.v.

Definition

(cdf of a Discrete Random Variable)
Let X be a discrete random variable s.t. $\quad \operatorname{Supp}(X)=\left\{k_{1}, k_{2}, k_{3}, \cdots\right\}$ Then, its cdf, denoted as $F_{X}(x)$, is defined as follows:

$$
F_{X}(x):=\mathbb{P}(X \leq x)=\sum_{k_{i} \leq x} p_{X}\left(k_{i}\right) \forall x \in \mathbb{R}
$$

Corollary

(cdf Axioms)
Let X be a discrete random variable. Then, its cdf $F_{X}(x)$, satisfies
Eventually Zero (One) to the Left (Right): $\lim _{x \rightarrow-\infty} F_{X}(x)=0, \lim _{x \rightarrow+\infty} F_{X}(x)=1$
Non-decreasing:
$x_{1} \leq x_{2} \Longrightarrow F_{X}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right)$
Right-continuous:
$\lim _{x \downarrow x_{0}} F_{X}(x)=F_{X}\left(x_{0}\right) \quad \forall x_{0} \in \mathbb{R}$
Piecewise Constant:
(AKA step function)

Computing cdf's from pmf's

$$
\begin{aligned}
& p_{W}(k)=\left\{\begin{array}{ll}
1 / 2 & , \text { if } k=0 \\
1 / 2 & , \text { if } k=1
\end{array} \Longrightarrow F_{W}(x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
\frac{1}{2} & , \text { if } 0 \leq x<1 \\
\frac{1}{2}+\frac{1}{2} & \text {, if } 1 \leq x
\end{array}\right.\right. \\
& p_{X}(k)=\left\{\begin{array}{cl}
1 / 8 & , \text { if } k=0 \\
7 / 8 & \text {, if } k=1
\end{array} \Longrightarrow F_{X}(x)=\left\{\begin{array}{cl}
0 & \text {, if } x<0 \\
\frac{1}{8} & , \text { if } 0 \leq x<1 \\
\frac{1}{8}+\frac{7}{8} & \text {, if } 1 \leq x
\end{array}\right.\right. \\
& p_{Y}(k)=\left\{\begin{array}{cl}
1 / 8 & , \text { if } k=0 \\
3 / 8 & , \text { if } k=1 \\
3 / 8 & , \text { if } k=2 \\
1 / 8 & , \text { if } k=3
\end{array} ~ \Longrightarrow F_{Y}(x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
\frac{1}{8} & \text { if } 0 \leq x<1 \\
\frac{1}{8}+\frac{3}{8} & \text { if } 1 \leq x<2 \\
\frac{1}{8}+\frac{3}{8}+\frac{3}{8} & , \text { if } 2 \leq x<3 \\
\frac{1}{8}+\frac{3}{8}+\frac{3}{8}+\frac{1}{8} & \text {, if } 3 \leq x
\end{array}\right.\right. \\
& p_{Z}(k)=\left\{\begin{array}{cl}
1 / 8 & , \text { if } k=-3 \\
3 / 8 & , \text { if } k=-1 \\
3 / 8 & , \text { if } k=1 \\
1 / 8 & , \text { if } k=3
\end{array} \quad \Longrightarrow F_{Z}(x)=\left\{\begin{array}{cl}
0 & \text {, if } x<-3 \\
\frac{1}{8} & \text {, if }-3 \leq x<-1 \\
\frac{1}{8}+\frac{3}{8} & \text {, if }-1 \leq x<1 \\
\frac{1}{8}+\frac{3}{8}+\frac{3}{8} & , \text { if } 1 \leq x<3 \\
1 & \text {, if } 3 \leq x
\end{array}\right.\right.
\end{aligned}
$$

Computing cdf's from pmf's

$$
\begin{aligned}
& p_{W}(k)=\left\{\begin{array}{cl}
1 / 2 & , \text { if } k=0 \\
1 / 2 & , \text { if } k=1
\end{array} \Longrightarrow F_{W}(x)=\left\{\begin{array}{cl}
0 & , \text { if } x<0 \\
1 / 2 & , \text { if } 0 \leq x<1 \\
1 & , \text { if } 1 \leq x
\end{array}\right.\right. \\
& p_{X}(k)=\left\{\begin{array}{cl}
1 / 8 & , \text { if } k=0 \\
7 / 8 & , \text { if } k=1
\end{array} \Longrightarrow F_{X}(x)=\left\{\begin{array}{cl}
0 & \text {, if } x<0 \\
1 / 8 & , \text { if } 0 \leq x<1 \\
1 & , \text { if } 1 \leq x
\end{array}\right.\right. \\
& p_{Y}(k)=\left\{\begin{array}{ll}
1 / 8 & , \text { if } k=0 \\
3 / 8 & , \text { if } k=1 \\
3 / 8 & , \text { if } k=2 \\
1 / 8 & , \text { if } k=3
\end{array} \quad \Longrightarrow F_{Y}(x)=\left\{\begin{array}{cl}
0 & , \text { if } x<0 \\
1 / 8 & , \text { if } 0 \leq x<1 \\
1 / 2 & , \text { if } 1 \leq x<2 \\
7 / 8 & , \text { if } 2 \leq x<3 \\
1 & , \text { if } 3 \leq x
\end{array}\right.\right. \\
& p_{Z}(k)=\left\{\begin{array}{cl}
1 / 8 & , \text { if } k=-3 \\
3 / 8 & , \text { if } k=-1 \\
3 / 8 & , \text { if } k=1 \\
1 / 8 & , \text { if } k=3
\end{array} \quad \Longrightarrow F_{Z}(x)=\left\{\begin{array}{cl}
0 & , \text { if } x<-3 \\
1 / 8 & , \text { if }-3 \leq x<-1 \\
1 / 2 & , \text { if }-1 \leq x<1 \\
7 / 8 & , \text { if } 1 \leq x<3 \\
1 & , \text { if } 3 \leq x
\end{array}\right.\right.
\end{aligned}
$$

Plots of pmf \& cdf of each Discrete Random Variable

k	0	1
$p_{W}(k)$	$1 / 2$	$1 / 2$

pmf from the 3. 2 Slides

cdf from the 3. 2 Slides

Plots of pmf \& cdf of each Discrete Random Variable

k	0	1
$p_{X}(k)$	$1 / 8$	$7 / 8$

pmf from the 3. 2 Slides

cdf from the 3. 2 Slides

Plots of pmf \& cdf of each Discrete Random Variable

k	0	1	2	3
$p_{Y}(k)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

pmf from the 3. 2 Slides
cdf from the 3. 2 Slides

Plots of pmf \& cdf of each Discrete Random Variable

k	-3	-1	1	3
$p_{Z}(k)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

pmf from the 3. 2 Slides

Computing Probabilities using a Discrete cdf

Theorem

Let X be a discrete r.v. with cdf $F_{X}(x)$. Let scalars $a, b \in \mathbb{R}$ s.t. $a<b$. Then:

$$
\begin{aligned}
\mathbb{P}(X \leq a) & =F_{X}(a) \\
\mathbb{P}(X<a) & =F_{X}(a-) \\
\mathbb{P}(a \leq X \leq b) & =F_{X}(b)-F_{X}(a-) \\
\mathbb{P}(a<X<b) & =F_{X}(b-)-F_{X}(a) \\
\mathbb{P}(a<X \leq b) & =F_{X}(b)-F_{X}(a) \\
\mathbb{P}(a \leq X<b) & =F_{X}(b-)-F_{X}(a-) \\
& \\
\mathbb{P}(X \geq b) & =1-F_{X}(b-) \\
\mathbb{P}(X>b) & =1-F_{X}(b) \\
\mathbb{P}(X=a) & =F_{X}(a)-F_{X}(a-)
\end{aligned}
$$

$" a-"$ represents the largest $k \in \operatorname{Supp}(X)$ such that $k<a$ $" b-$ " represents the largest $k \in \operatorname{Supp}(X)$ such that $k<b$

Comparison of Probabilities via pmf v.s. cdf

$$
p_{Y}(k)=\left\{\begin{array}{cl}
1 / 8 & , \text { if } k=0 \\
3 / 8 & \text {, if } k=1 \\
3 / 8 & \text {, } k=2 \\
1 / 8 & \text {, if } k=3
\end{array} \quad \Longrightarrow F_{Y}(x)=\left\{\begin{array}{cl}
0 & , \text { if } x<0 \\
1 / 8 & \text {, if } 0 \leq x<1 \\
1 / 2 & \text {, if } 1 \leq x<2 \\
7 / 8 & \text {, if } 2 \leq x<3 \\
1 & \text {, if } 3 \leq x
\end{array}\right.\right.
$$

$\mathbb{P}(Y \leq 2)=p_{Y}(0)+p_{Y}(1)+p_{Y}(2)=\frac{1}{8}+\frac{3}{8}+\frac{3}{8}=\frac{7}{8}$
$\mathbb{P}(Y \leq 2)=F_{Y}(2)=\frac{7}{8}$
$\mathbb{P}(Y<2)=p_{Y}(0)+p_{Y}(1)=\frac{1}{8}+\frac{3}{8}=\frac{1}{2}$
$\mathbb{P}(Y<2)=F_{Y}(2-)=F_{Y}(1)=\frac{1}{2}$
$\mathbb{P}(1<Y \leq 3)=p_{Y}(2)+p_{Y}(3)=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}$
$\mathbb{P}(1<Y \leq 3)=F_{Y}(3)-F_{Y}(1)=1-\frac{1}{2}=\frac{1}{2}$

Comparison of Probabilities via pmf v.s. cdf

$$
p_{Y}(k)=\left\{\begin{array}{cl}
1 / 8 & , \text { if } k=0 \\
3 / 8 & , \text { if } k=1 \\
3 / 8 & , \text { if } k=2 \\
1 / 8 & , \text { if } k=3
\end{array} \quad \Longrightarrow F_{Y}(x)=\left\{\begin{array}{cl}
0 & , \text { if } x<0 \\
1 / 8 & , \text { if } 0 \leq x<1 \\
1 / 2 & \text {, if } 1 \leq x<2 \\
7 / 8 & , \text { if } 2 \leq x<3 \\
1 & , \text { if } 3 \leq x
\end{array}\right.\right.
$$

$\mathbb{P}(Y \geq 2)=p_{Y}(2)+p_{Y}(3)=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}$
$\mathbb{P}(Y \geq 2)=1-F_{Y}(2-)=1-F_{Y}(1)=1-\frac{1}{2}=\frac{1}{2}$
$\mathbb{P}(Y>2)=p_{Y}(3)=\frac{1}{8}$
$\mathbb{P}(Y>2)=1-F_{Y}(2)=1-\frac{7}{8}=\frac{1}{8}$
$\mathbb{P}(1 \leq Y<3)=p_{Y}(1)+p_{Y}(2)=\frac{3}{8}+\frac{3}{8}=\frac{3}{4}$
$\mathbb{P}(1 \leq Y<3)=F_{Y}(3-)-F_{Y}(1-)=F_{Y}(2)-F_{Y}(0)=\frac{7}{8}-\frac{1}{8}=\frac{3}{4}$

Comparison of Probabilities via pmf v.s. cdf

$$
p_{Y}(k)=\left\{\begin{array}{cl}
1 / 8 & , \text { if } k=0 \\
3 / 8 & \text {, if } k=1 \\
3 / 8 & \text {, f } k=2 \\
1 / 8 & \text {, if } k=3
\end{array} \quad \Longrightarrow F_{Y}(x)=\left\{\begin{array}{cl}
0 & , \text { if } x<0 \\
1 / 8 & \text {, if } 0 \leq x<1 \\
1 / 2 & \text {, if } 1 \leq x<2 \\
7 / 8 & , \text { if } 2 \leq x<3 \\
1 & \text { if } 3<x
\end{array}\right.\right.
$$

$$
\begin{aligned}
& \mathbb{P}(Y=2)=p_{Y}(2)=\frac{3}{8} \\
& \mathbb{P}(Y=2)=F_{Y}(2)-F_{Y}(2-)=F_{Y}(2)-F_{Y}(1)=\frac{7}{8}-\frac{1}{2}=\frac{3}{8}
\end{aligned}
$$

$$
\mathbb{P}(Y=2.5)=p_{Y}(2.5)=0 \quad[\text { Since } 2.5 \notin \operatorname{Supp}(Y)]
$$

$$
\mathbb{P}(Y=2.5)=F_{Y}(2.5)-F_{Y}(2.5-)=F_{Y}(2.5)-F_{Y}(2)=\frac{7}{8}-\frac{7}{8}=0
$$

Textbook Logistics for Section 3.2

- Difference(s) in Terminology:

TEXTBOOK TERMINOLOGY	SLIDES/OUTLINE TERMINOLOGY
Null Event \emptyset	Empty Set \emptyset
Number of Outcomes in E	Measure of E

- Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Sample Space	\mathcal{S}	Ω
Probability of Event	$P(A)$	$\mathbb{P}(A)$
Measure of Event	$N(A)$	$\|A\|$
Support of a r.v.	"All possible values of $X "$	$\operatorname{Supp}(X)$
Support of a r.v.	D	$\operatorname{Supp}(X)$
pmf of a r.v.	$p(x)$	$p_{X}(k)$
cdf of a r.v.	$F(x)$	$F_{X}(x)$

Textbook Logistics for Section 3.2

- Skip Parameter(s) of a Probability Distribution (pg 103)
- Parameters are often associated with pmf's of well-known random variables
- Parameters will be covered in Sections 3.4 \& 3.6
- Parameters also occur with continuous random variables, and hence will also be covered in Ch4.

Fin.

