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pmf’s of Discrete Random Variables (Examples)

Experiment: Observe which seats in a 3-seat car are occupied (F) or not (A)
Sample Space: Q2 = {AAA,AAF,AFA,AFF,FAA, FAF,FFA, FFF}

W = If 3" seat in car is available (1 = Yes, 0 = No)

X = If car has any available seats (1 = Yes, 0 = No)

Y = Number of available seats in car

Z = Difference in # of available and occupied seats

Let random variables

W(AAA) =1 X(AAA) =1 Y(AAA) =3 Z(AAA)=3-0 = 3
W(AAF) =0 X(AAF)=1 Y(AAF)=2 Z(AAF)=2-1 = 1
W(AFA) =1 X(AFA)=1 Y(AFA)=2 Z(AFA)=2-1 = 1
Then: WAFF) =0 X(AFF)=1 Y(AFF)=1 Z(AFF)=1-2 = -I
" OW(FAA) =1 X(FAA)=1 Y(FAA)=2 Z(FAA)=2-1 = 1
W(FAF) =0 X(FAF)=1 Y(FAF)=1 Z(FAF)=1-2 = -1
W(FFA) =1 X(FFA)=1 Y(FFA)=1 Z(FFA)=1-2 = -1
W(FFF) =0 X(FFF)=0 Y(FFF)=0 Z(FFF)=0-3 = -3
Supp(W) = {0,1} = Supp(W) is countable — W is discrete
Supp(X) = {0,1} = Supp(X) is countable — X is discrete
Supp(Y) = {0,1,2,3} = Supp(Y) is countable = Y is discrete
Supp(Zz) = {-3,-1,1,3} = Supp(Z)is countable — Z is discrete
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pmf’s of Discrete Random Variables  (Examples)
CARTEART _ I
pw®) [ 172 [ 1/2 %géiwfm&@._pwm)+pw(n__2_%2__1 ,
kK || o1 - R
p(®) [ 178 [7/8 keSuzp:p(me(k) = Px(O)kpell) = g g1 v

k o1 ]2]3

pr(k) | 1/8]3/8]3/8]1/8

3 3 1

Z pr(k) = py(0) + pyr(1) +pr(2) + pr(3) = 1 FIl4Z 4o =1v

8

keSupp(Y)

8 8 8

ISR

p2(k) | 1/83/83/8] 1/8

1 3 3 1

Z PZ(k) :PZ(_3) +PZ(—1) —|—pz(1) —|—pz(3) —— 4+ 4+ =1V

k€Supp(2)

Josh Engwer (TTU) Discrete r.v.s: Expected Value & Variance

8§ & 8 8

19 February 2016 3/19



pmf’s of Discrete r.v.’s Represent Populations

Recall from Chapter 1 that:

@ Inferential Statistics draws conclusions on populations from samples.
@ Probability draws conclusions on samples from populations.

Since the pmf of a discrete random variable indicates probabilities,
pmf’s represent populations, not samples!

Moreover, since probabilities can be view as relative frequencies,

pmf’s can be visualized as histograms.

As mentioned in Chapter 1, a population has a mean & a variance.

Since a random variable represents a population, it makes sense to talk about:
@ the mean (more often called the expected value) of a random variable
@ the variance of a random variable
@ the standard deviation of a random variable
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Expected Value (Mean) of a Discrete Random Variable

Definition
(Expected Value of a Discrete r.v.)

Let X be a discrete random variable with pmf px (k).
Then the expected value (AKA mean) of X is:

EX]:= Y k-px(k)

keSupp(X)

It's possible (but rare) that the expected value is infinite:

E[X] = oo

NOTATION: The expected value of X is alternatively denoted by ix.
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Expected Values of Discrete r.v's  (Examples)
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Expected Values of Discrete r.v's  (Examples)
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Expected Value (Mean) of a Function of Discrete r.v.

Definition
Let X be a discrete random variable with pmf px (k).

Let A(x) be a single-variable function.
Then the expected value (AKA mean) of 4(X) is:

Er(X)]:= Y h(k) - px(k)

keSupp(X)

It's possible (but rare) that the expected value is infinite: E[A(X)] = £o0

NOTATION: The expected value of 4(X) is alternatively denoted by 14 (x).
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Variance & Standard Deviation of a Discrete r.v.

Definition
(Variance & Standard Deviation of a Discrete Random Variable)

Let X be a discrete random variable with pmf px(k) and mean .
Then the variance of X is:

VX :=E[X —px)] = > (k—px)* px(k)
keSupp(X)

Moreover, the standard deviation of X is: oy := /V[X]

NOTATION: The variance of X is alternatively denoted by 0% or Var(X).

Josh Engwer (TTU) Discrete r.vs: Expected Value & Variance 19 February 2016  9/19



Variance & Std Dev of Discrete r.v's  (Examples)

i =EX]= 3 kpsk)=0-px(O) 4 1-px()=0- g 411 =1
keSupp(X)
Vix] = Z (k — pux)* - px (k)
keSupp(X)
2 2

= (0-5) »@+ (1-3) pat0)

4911 T 49 7 56 |7

T 3T 8T 6B 6B (6HE) |64
ox = /VX] = 674 = g ~ 0.330719

Josh Engwer (TTU) Discrete r.v.s: Expected Value & Variance 19 February 2016



Variance & Std Dev of Discrete r.v's  (Examples)
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An Easier Way to Compute Variance

Computing variances using the definition can be quite tedious!
Fortunately, there’s an equivalent formula that’s easier to use:

(Easier Formula for Variance)

LetX be a discrete random variable with pmf px(k). Then:

V[X] = E[x’] - (E[X])?

PROOF: Let ux = E[X]. Then:

Vix] = Z (k= px)* - px(k) = Z (kK> — 2kpx + pz) - px (k)
keSupp(X) keSupp(X)
= Z i px (k) — 2pux - Z k- px(k) + p - Z px (k)
keSupp(X) keSupp(X) keSupp(X)

= E[X?] - 2uyE[X] + pi - 1 = E[X?] — 2px(px) + 115
= E[X°] - 245 + piz = E[X?] — pz = E[X?] — (E[X])’ QED
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Variances of Discrete r.v.’s
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Linearity of Discrete Expected Value (Part I)

When #(x) is a linear function [i.e. i(x) = ax + b, the following properties
make computation of its expected value easier:

(Linearity of Expected Value of Discrete Random Variable)
Leta,b € R. Then:

Let X be a discrete random variable with pmf px (k).

ElaX+ b =a-E[X]+b

PROOF:
ElaX+b] = Y (ak+b)-px(k)= Y  ak-px(k)+ Y b-px(k)
keSupp(X) keSupp(X) keSupp(X)
= a- Z k-px(k) | + b- Z px(k)
keSupp(X) keSupp(X)

QED
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Linearity of Discrete Expected Value (Part Il)

When #(x) is a linear function [i.e. #(x) = a - g(x) + b], the following
properties make computation of its expected value easier:

(Linearity of Expected Value of Discrete Function)

Let X be a discrete random variable with pmf px(k). Leta,b € R. Then:

Ela-g(X)+ b =a-E[g(X)]+b

PROOF:
Ela-g(X)+b] = Z a-glk Z bpx
keSupp(X) keSupp(X
= a ( > ek 'Px(k>) + b ( > Px(k>>
keSupp(X) keSupp(X)
= a-EgX)]+b-1=a-E[lgX)]+b QED
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Semi-Linearity of Discrete Variance

When #(x) is a linear function [i.e. i(x) = ax + b], the following properties
make computation of its variance easier:

(Semi-Linearity of Discrete Variance)

Let X be a discrete random variable with pmf px(k). Leta,b € R. Then:

V[aX + b] = a® - V[X] V]a-g(X) + b] = a* - V[g(X)]

PROOF:
V[aX + b] = E[(aX + b)?] — (E[aX + b)])? = E[a*X? + 2abX + b?] — (aE[X] + b)?
= (a®E[X?] 4 2abE[X] + b*) — [a*(E[X])? + 2abE[X] + b?]

= [@®E[X?] — a*(E[X])?] + (2abE[X] — 2abE[X]) + (b* — b?)
= A*[E[X?] — (E[X])?] +0+0
= a’V[X] QED
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Semi-Linearity of Discrete Standard Deviation

When #(x) is a linear function [i.e. i(x) = ax + b], the following properties
make computation of its standard deviation easier:

(Semi-Linearity of Discrete Standard Deviation)

Let X be a discrete random variable with pmf px(k). Leta,b € R. Then:

Oax+» = |a| - ox Tag(X)+b = |a| - Tg(x)
PROOF:
Oaxrr = /V0[aX + b] = \/&V[X] = Va? - /V[X] := |a| - 0% QED
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Textbook Logistics for Section 3.3

@ Difference(s) in Notation:

CONCEPT TEXTBOOK SLIDES/OUTLINE
NOTATION NOTATION
Probability of Event P(A) P(A)
Measure of Event N(A) |A|
Support of ar.v. ” All possible values of X” Supp(X)
Support of a r.v. D Supp(X)
pmf of a r.v. p(x) px (k)
cdf of ar.v. F(x) Fx(x)
Expected Value of a r.v. E(X) E[X]
Variance of a r.v. V(X) ViX]
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