Geometric \& Negative Binomial Distributions

Engineering Statistics
Section 3.5

Josh Engwer

TTU

02 May 2016

PART I:

BINOMIAL DISTRIBUTION (REVIEW)

Binomial Random Variables (Applications)

Binomial r. v.'s model the \# successes of n independent Bernoulli Trials:

- Flip n coins, then count \# Heads. (Success \equiv "Heads", Failure \equiv "Tails")
- Flip n coins, then count \# Tails. (Success \equiv "Tails", Failure \equiv "Heads")
- Roll n dice, then count \# 6's. (Success \equiv " 6 ", Failure \equiv " $1,2,3,4$ or 5 ")
- Roll n dice, then count \# 5's and 6's. (Success \equiv " 5 or 6")
- Roll n dice, then count \# odd numbers. (Success \equiv "odd \#")
- Shake a mixed bag of almonds \& cashews until n pieces fall out. Then count how many pieces are almonds. (Success \equiv "almond piece")
- Randomly select n people in a large busy conference.

Then count how many are wearing a hat. (Success \equiv person wears hat)

- Randomly select n people in the 'Treatment' group of a medical trial. Then count how many had successful treatment.
- Randomly select n people, count how many will vote 'yes' for resolution.
- Count how many of the next n built widgets are not defective.
- Randomly select n websites, count how many got ≥ 1000 views today
- Randomly select n newborn kittens, count how many are female.

NOTE: "Success" \& "Failure" are labels - do not interpret them literally.

Binomial Random Variables (Summary)

Proposition

Notation $\quad X \sim \operatorname{Binomial}(n, p), n \geq 1, \quad 0<p<1, \quad q:=1-p$
Parameter(s)
$p \equiv \mathbb{P}($ Bernoulli Trial is a Success)
$q \equiv \mathbb{P}($ Bernoulli Trial is a Failure $)$
Support $\operatorname{Supp}(X)=\{0,1,2, \cdots, n-2, n-1, n\}$
$\underset{(p m f)}{\text { Density }} \quad p_{X}(k ; n, p):=\binom{n}{k} p^{k} q^{n-k}=\binom{n}{k} p^{k}(1-p)^{n-k}$

Mean	$\mathbb{E}[X]=n p$
Variance	$\mathbb{V}[X]=n p q=n p(1-p)$
Model(s)	\# Successes of n Bernoulli Trials

1. Random process comprises of n trials.

Assumption(s)
2. Trials are all identical \& independent.
3. Random process has its sample space partitioned into Successes and Failures

PART II:

GEOMETRIC DISTRIBUTION

Geometric Random Variables (Applications)

Geometric rv's model \# of Bernoulli Trial failures until the $1^{\text {st }}$ success:

- Flip a coin until a Heads occurs. (Success \equiv "Heads", Failure \equiv "Tails")
- Flip a coin until a Tails occurs. (Success \equiv "Tails", Failure \equiv "Heads")
- Roll a die until a " 6 " occurs. (Success $\equiv " 6 "$, Failure $\equiv " 1,2,3,4$ or 5 ")
- Roll a die until a " 5 " or a " 6 " occur. (Success \equiv " 5 or 6")
- Roll a die until an odd number occurs. (Success \equiv "odd \#")
- Shake a mixed bag of almonds \& cashews until one piece falls out. Repeat this until an almond falls out. (Success = "almond piece")
- Randomly select one person in a large busy conference. Repeat this until a person wearing a hat is chosen. (Success \equiv person wears hat)
- Randomly select a person in the 'Treatment' group of a medical trial. Repeat this until a chosen person had a successful treatment.
- Randomly select people until one will vote 'yes' for resolution.
- Build widgets until one is not defective.
- Randomly select websites until one got ≥ 1000 views today
- Randomly select newborn kittens until one is female.

NOTE: "Success" \& "Failure" are labels - do not interpret them literally.

Geometric Random Variables (Summary)

Proposition

Notation
Parameter(s)
Support
pmf
cdf

$$
X \sim \operatorname{Geometric}(p), \quad 0<p<1, \quad q:=1-p
$$

$p \equiv$ Probability of a "Success"

$$
\operatorname{Supp}(X)=\{0,1,2,3,4, \cdots\}
$$

Mean
Variance

$$
\begin{aligned}
\mathbb{E}[X]=q / p & =(1-p) / p \\
\mathbb{V}[X]=q / p^{2} & =(1-p) / p^{2}
\end{aligned}
$$

\# of Bernoulli Trial Failures until the $1^{\text {st }}$ Success occurs
2. Trials are all identical \& independent.
3. Random process has its sample space partitioned into Successes and Failures

1. Experiment continues until $1^{\text {st }}$ Success occurs

Assumption(s)

PART III:

NEGATIVE BINOMIAL DISTRIBUTION

Negative Binomial Random Variables (Applications)

Negative Binomial rv's model \# of failures until the $r^{\text {th }}$ success:

- Flip a coin until r Heads occur. (Success \equiv "Heads", Failure \equiv "Tails")
- Flip a coin until r Tails occur. (Success \equiv "Tails", Failure \equiv "Heads")
- Roll a die until r 6's occur. (Success \equiv " 6 ", Failure $\equiv " 1,2,3,4$ or 5 ")
- Roll a die until r 5's or 6's occur. (Success \equiv " 5 or 6 ")
- Roll a die until r odd numbers occur. (Success \equiv "odd \#")
- Shake a mixed bag of almonds \& cashews until one piece falls out. Repeat this until r almonds fall out. (Success \equiv "almond piece")
- Randomly select one person in a large busy conference. Repeat this until r people wearing a hat are chosen. (Success \equiv person wears hat)
- Randomly select a person in the 'Treatment' group of a medical trial. Repeat this until r chosen people had a successful treatment.
- Randomly select people until r of them will vote 'yes' for resolution.
- Build widgets until r of them are not defective.
- Randomly select websites until r of them got ≥ 1000 views today
- Randomly select newborn kittens until r of them are female.

NOTE: "Success" \& "Failure" are labels - do not interpret them literally.

Negative Binomial Random Variables (Summary)

Proposition

Notation $\quad X \sim$ NegativeBinomial $(r, p), \quad r>0, \quad 0<p<1, q:=1-p$
Parameter(s)
$r \equiv$ Number of "Successes"
$p \equiv$ Probability of a "Success"
Support

$$
\operatorname{Supp}(X)=\{0,1,2,3,4, \cdots\}
$$

pmf

$$
p_{X}(k ; r, p):=\binom{k+r-1}{r-1} p^{r} q^{k}=\binom{k+r-1}{r-1} p^{r}(1-p)^{k}
$$

Mean

$$
\mathbb{E}[X]=r q / p=r(1-p) / p
$$

Variance $\mathbb{V}[X]=r q / p^{2}=r(1-p) / p^{2}$
\# of Bernoulli Trial Failures until the $r^{\text {th }}$ Success occurs

1. Experiment continues until $r^{\text {th }}$ Success occurs

Assumption(s)
2. Trials are all identical \& independent.
3. Random process has its sample space partitioned into Successes and Failures

NOTE: A Geometric (p) rv is equivalent to a NegativeBinomial $(r=1, p)$ rv.

Outcomes for Binomial, Geometric, Neg. Binomial rv's

$X \sim \operatorname{Binomial}(n, p)$	\Longrightarrow	$X \equiv$ (\# Successes in n trials $)$
$X \sim \operatorname{Geometric}(p)$	\Longrightarrow	$X \equiv$ (\# Failures until $1^{\text {st }}$ Success)
$X \sim \operatorname{NegativeBinomial~}(r, p)$	\Longrightarrow	$X \equiv\left(\#\right.$ Failures until $r^{t h}$ Success)

VALUE	$\begin{gathered} \text { OUTCOMES } \\ \text { FOR } \\ \text { Binomial }(n=3, p) \end{gathered}$	$\begin{gathered} \text { OUTCOMES } \\ \text { FOR } \\ \text { Geometric }(p) \end{gathered}$	OUTCOMES FOR NegativeBinomial $(r=2, p)$
$X=0$	FFF	S	SS
$X=1$	SFF, FSF, FFS	FS	FSS, SFS
$X=2$	SSF, SFS, FSS	FFS	FFSS, FSFS, SFFS
$X=3$	SSS	FFFS	FFFSS, FFSFS, FSFFS,SFFFS
$X=4$	(Not Possible)	FFFFS	FFFFSS,FFFSFS, FFSFFS, FSFFFS, SFFFFS
$X=5$	(Not Possible)	FFFFFS	FFFFFSS, FFFFSFS, FFFSFFS, FFSFFFS, FSFFFFS, SFFFFFS
\vdots	\vdots	\vdots	\vdots

Fin.

