Geometric & Negative Binomial Distributions Engineering Statistics Section 3.5

Josh Engwer

TTU

02 May 2016

Josh Engwer (TTU)

PART I:

BINOMIAL DISTRIBUTION (REVIEW)

Binomial Random Variables (Applications)

Binomial r. v.'s model the # successes of n independent Bernoulli Trials:

- Flip *n* coins, then count # Heads. (Success \equiv "Heads", Failure \equiv "Tails")
- Flip *n* coins, then count # Tails. (Success \equiv "Tails", Failure \equiv "Heads")
- Roll *n* dice, then count # 6's. (Success \equiv "6", Failure \equiv "1,2,3,4 or 5")
- Roll *n* dice, then count # 5's and 6's. (Success \equiv "5 or 6")
- Roll *n* dice, then count # odd numbers. (Success \equiv "odd #")
- Shake a mixed bag of almonds & cashews until *n* pieces fall out.
 Then count how many pieces are almonds. (Success ≡ "almond piece")
- Randomly select *n* people in a large busy conference.
 Then count how many are wearing a hat. (Success ≡ person wears hat)
- Randomly select *n* people in the 'Treatment' group of a medical trial. Then count how many had successful treatment.
- Randomly select *n* people, count how many will vote 'yes' for resolution.
- Count how many of the next *n* built widgets are **not** defective.
- Randomly select *n* websites, count how many got ≥ 1000 views today
- Randomly select *n* newborn kittens, count how many are female.

NOTE: "Success" & "Failure" are labels - do not interpret them literally.

Binomial Random Variables (Summary)

Proposition

Notation	$\begin{array}{rcl} X \sim \textit{Binomial}(n,p), & n \geq 1, & 0$		
Parameter(s)			
Support	$Supp(X) = \{0, 1, 2, \cdots, n-2, n-1, n\}$		
Density (pmf)	$p_X(k;n,p) := \binom{n}{k} p^k q^{n-k} = \binom{n}{k} p^k (1-p)^{n-k}$		
Mean	$\mathbb{E}[X] = np$		
Variance	$\mathbb{V}[X] = npq = np(1-p)$		
Model(s)	# Successes of n Bernoulli Trials		
Assumption(s)	 Random process comprises of n trials. Trials are all identical & independent. Random process has its sample space partitioned into Successes and Failures 		

PART II:

GEOMETRIC DISTRIBUTION

Geometric Random Variables (Applications)

Geometric rv's model # of Bernoulli Trial failures until the 1st success:

- Flip a coin until a Heads occurs. (Success \equiv "Heads", Failure \equiv "Tails")
- Flip a coin until a Tails occurs. (Success \equiv "Tails", Failure \equiv "Heads")
- Roll a die until a "6" occurs. (Success \equiv "6", Failure \equiv "1,2,3,4 or 5")
- Roll a die until a "5" or a "6" occur. (Success \equiv "5 or 6")
- Roll a die until an odd number occurs. (Success \equiv "odd #")
- Shake a mixed bag of almonds & cashews until one piece falls out. Repeat this until an almond falls out. (Success \equiv "almond piece")
- Randomly select one person in a large busy conference. Repeat this until a person wearing a hat is chosen. (Success ≡ person wears hat)
- Randomly select a person in the 'Treatment' group of a medical trial. Repeat this until a chosen person had a successful treatment.
- Randomly select people until one will vote 'yes' for resolution.
- Build widgets until one is **<u>not</u>** defective.
- Randomly select websites until one got ≥ 1000 views today
- Randomly select newborn kittens until one is female.
- NOTE: "Success" & "Failure" are labels do not interpret them literally.

Geometric Random Variables (Summary)

Proposition

Notation	$X \sim Geometric(p), 0$		
Parameter(s)	$p \equiv Probability of a "Success"$		
Support	$Supp(X) = \{0, 1, 2, 3, 4, \cdots\}$		
pmf	$p_X(k;p) := q^k p = (1-p)^k p$		
cdf	$F_X(k;p) = 1 - q^{k+1} = 1 - (1-p)^{k+1}$		
Mean	$\mathbb{E}[X] = q/p = (1-p)/p$		
Variance	$\mathbb{V}[X] = q/p^2 = (1-p)/p^2$		
Model(s)	# of Bernoulli Trial Failures until the 1 st Success occurs		
Assumption(s)	 Experiment continues until 1st Success occurs Trials are all identical & independent. Random process has its sample space partitioned into Successes and Failures 		

PART III:

NEGATIVE BINOMIAL DISTRIBUTION

Negative Binomial Random Variables (Applications)

Negative Binomial rv's model # of failures until the rth success:

- Flip a coin until *r* Heads occur. (Success \equiv "Heads", Failure \equiv "Tails")
- Flip a coin until *r* Tails occur. (Success \equiv "Tails", Failure \equiv "Heads")
- Roll a die until r 6's occur. (Success \equiv "6", Failure \equiv "1,2,3,4 or 5")
- Roll a die until r 5's or 6's occur. (Success \equiv "5 or 6")
- Roll a die until r odd numbers occur. (Success ≡ "odd #")
- Shake a mixed bag of almonds & cashews until one piece falls out. Repeat this until r almonds fall out. (Success \equiv "almond piece")
- Randomly select one person in a large busy conference. Repeat this until r people wearing a hat are chosen. (Success \equiv person wears hat)
- Randomly select a person in the 'Treatment' group of a medical trial. Repeat this until *r* chosen people had a successful treatment.
- Randomly select people until *r* of them will vote 'yes' for resolution.
- Build widgets until *r* of them are **not** defective.
- Randomly select websites until r of them got ≥ 1000 views today
- Randomly select newborn kittens until *r* of them are female.

NOTE: "Success" & "Failure" are labels – do not interpret them literally.

Negative Binomial Random Variables (Summary)

Proposition

Notation	$X \sim NegativeBinomial(r, p), r > 0, 0 r \equiv Number of "Successes"$	
Parameter(s)	$p \equiv Probability of a "Success"$	
Support	$Supp(X) = \{0, 1, 2, 3, 4, \dots\}$	
pmf	$p_X(k;r,p) := \binom{k+r-1}{r-1} p^r q^k = \binom{k+r-1}{r-1} p^r (1-p)^k$	
Mean	$\mathbb{E}[X] = rq/p = r(1-p)/p$	
Variance	$\mathbb{V}[X] = rq/p^2 = r(1-p)/p^2$	
Model(s)	# of Bernoulli Trial Failures until the r^{th} Success occurs	
Assumption(s)	 Experiment continues until rth Success occurs Trials are all identical & independent. Random process has its sample space partitioned into Successes and Failures 	

<u>NOTE</u>: A Geometric(p) rv is equivalent to a NegativeBinomial(r = 1, p) rv.

Outcomes for Binomial, Geometric, Neg. Binomial rv's

- \implies $X \equiv (\#$ Successes in *n* trials) $X \sim \mathsf{Binomial}(n, p)$
- $X \sim \text{Geometric}(p)$

 \implies $X \equiv (\#$ Failures until 1st Success)

 $X \sim \text{NegativeBinomial}(r, p) \implies X \equiv (\# \text{ Failures until } r^{th} \text{ Success})$

VALUE	OUTCOMES FOR	OUTCOMES FOR	OUTCOMES FOR
	Binomial $(n = 3, p)$	Geometric(<i>p</i>)	NegativeBinomial $(r = 2, p)$
X = 0	FFF	S	SS
X = 1	SFF, FSF, FFS	FS	FSS, SFS
X = 2	SSF, SFS, FSS	FFS	FFSS, FSFS, SFFS
X = 3	SSS	FFFS	FFFSS, FFSFS, FSFFS, SFFFS
X = 4	(Not Possible)	FFFFS	FFFFSS, FFFSFS, FFSFFS, FSFFFS, SFFFFS
<i>X</i> = 5	(Not Possible)	FFFFFS	FFFFFSS, FFFFSFS, FFFSFFS, FFSFFFS, FSFFFFS, SFFFFFS
:	:	:	:

Fin.