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Siméon Denis Poisson (1781-1840)
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Poisson Random Variables (Applications)

Poisson random variables are used to model the following:

Number of arrivals over a fixed time period ∆t

# radioactive decays of 1µg of Iodine-123 in 1/1000 second
# phone calls a dispatcher received in 45 minutes
# emails an account received in two hours
# car accidents at a dangerous intersection in four weeks
# insurance claims from a given demographic in six months
# industrial accidents at a factory in five years
# wars started in a continent in three centuries

Number of arrivals over a fixed length ∆L

# mutations in a strand of DNA
# blemishes in a spool of copper wire

Number of arrivals over a fixed area ∆A

# chocolate chips in a large cookie

Number of arrivals over a fixed volume ∆V

# yeast cells used in brewing a glass of Guinness beer
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Poisson Random Variables (Summary)

Proposition
Notation X ∼ Poisson(λ), λ > 0

Parameter(s) λ = α∆t s.t.
λ ≡ Expected # Arrivals over Time Period
α ≡ Expected # Arrivals per Unit Time

∆t ≡ Time period
Support Supp(X) = {0, 1, 2, 3, · · · }

Density
(pmf) pX(k;λ) :=

λk

k!
e−λ

Mean E[X] = λ
Variance V[X] = λ

Model(s) Number of arrivals over a fixed time period ∆t
Number of arrivals over a fixed space ∆A or ∆V

Assumption(s)

P(No arrivals during time period ∆t) ≈ 1− α∆t
P(Exactly one arrival during time period ∆t) ≈ α∆t
P(More than one arrival during time period ∆t) ≈ 0

# Arrivals during disjoint time periods are independent
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Poisson Density Plots (pmf’s)

Remember, the only meaningful values of k for Poisson r.v.’s are 0, 1, 2, 3, · · ·
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Verification that Poisson pmf truly is a valid pmf

It’s not immediately obvious that pX(k;λ) =
λk

k!
e−λ is a pmf, so let’s prove it:

Non-negativity on its support:

Let k ∈ Supp(X) = N = {0, 1, 2, 3, · · · } and λ > 0.
Then k! > 0, λk > 0, and e−λ = 1

eλ > 0 =⇒ pX(k;λ) > 0

Universal Summation of Unity:∑
k∈Supp(X)

pX(k;λ) =

∞∑
k=0

λk

k!
e−λ = e−λ

∞∑
k=0

λk

k!

TAYLOR
= e−λ · eλ = 1

Recall from Calculus II that the Taylor Series about x = 0 for ex is
∞∑

k=0

xk

k!
.
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Mean of Poisson(λ) random variable (Proof)
Let random variable X ∼ Poisson(λ), where λ > 0. Then:

E[X] =
∑

k∈Supp(X)

k · pX(k;λ) =

∞∑
k=0

k · λ
k

k!
e−λ =

∞∑
k=1

k · λ
k

k!
e−λ

=

∞∑
k=1

λk

(k − 1)!
e−λ = e−λ

∞∑
k=1

λk

(k − 1)!

CV
= e−λ

∞∑
j=0

λj+1

j!

= λe−λ
∞∑

j=0

λj

j!
TAYLOR

= λe−λ · eλ = λ · e−λ+λ = λ · e0 = λ · 1 = λ

∴ E[X] = λ QED

CV: Let j = k − 1 ⇐⇒ k = j + 1.

Then k =∞ =⇒ j + 1 =∞ =⇒ j =∞− 1 =∞
k = 1 =⇒ j + 1 = 1 =⇒ j = 1 − 1 = 0

Recall from Calculus II that the Taylor Series about x = 0 for ex is
∞∑

k=0

xk

k!
.
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Variance of Poisson(λ) random variable (Proof)
Let random variable X ∼ Poisson(λ), where λ > 0. Then:

E[X2] =
∑

k∈Supp(X)

k2 · pX(k;λ) =

∞∑
k=0

k2 · λ
k

k!
e−λ =

∞∑
k=1

k2 · λ
k

k!
e−λ

= e−λ
∞∑

k=1

k · λk

(k − 1)!
= λe−λ

∞∑
k=1

k · λk−1

(k − 1)!
= λe−λ

∞∑
k=1

∂

∂λ

[
λk

(k − 1)!

]

(∗)
= λe−λ

d
dλ

[ ∞∑
k=1

λk

(k − 1)!

]
CV
= λe−λ

d
dλ

 ∞∑
j=0

λj+1

j!

 = λe−λ
d

dλ

λ ∞∑
j=0

λj

j!


= λe−λ

d
dλ

[
λeλ
]

= λe−λ
[
eλ + λeλ

]
= λ+ λ2

∴ V[X] = E[X2]− (E[X])2 = (λ+ λ2)− (λ)2 = λ QED

(∗) Interchanging summation & differentiation works here, but not in general.
Take Advanced Calculus for the painful details.
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Probabilities of Poisson rv’s via Poisson cdf Pois(x;λ)

It can get quite tedious using the Poisson pmf.
It’s easier to use the Poisson cdf, but the cdf has no elementary closed-form!
Instead, tables of numerical values of the Poisson cdf are used instead.
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Probabilities of Poisson rv’s via Poisson cdf Pois(x;λ)

Suppose X ∼ Poisson(λ = 0.8). Then:

P(X ≤ 1) = ??????
P(X ≤ 2) = ??????
P(X = 2) = ??????
P(X > 2) = ??????
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Probabilities of Poisson rv’s via Poission cdf Pois(x;λ)

Suppose X ∼ Poisson(λ = 0.8). Then:

P(X ≤ 1) = Pois(1; 0.8)
LOOKUP

= 0.80879
P(X ≤ 2) = Pois(2; 0.8)

LOOKUP
= 0.95258

P(X = 2) = P(X ≤ 2)− P(X ≤ 1) = 0.95258− 0.80879 = 0.14379
P(X > 2) = 1− P(X ≤ 2) = 1− 0.95258 = 0.04742
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Textbook Logistics for Section 3.6

Difference(s) in Notation:

CONCEPT
TEXTBOOK
NOTATION

SLIDES/OUTLINE
NOTATION

Probability of Event P(A) P(A)

Support of a r.v. ”All possible values of X” Supp(X)

pmf of a r.v. p(x) pX(k)

Expected Value of a r.v. E(X) E[X]

Variance of a r.v. V(X) V[X]

Poisson parameter µ λ

Poisson cdf F(x;µ) Pois(x;λ)
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Textbook Logistics for Section 3.6

Skip ”The Poisson Distribution as a Limit” section (pg 132-133)
This is will be covered in Chapter 5 where it’s more appropriate.

Ignore ”little-Oh” notion for assumptions of a Poisson Process (pg 134)
”Little-Oh” notation involves limits that can be hard to interpret:

e.g. (∆t)3 = o(∆t) since lim
∆t→0

(∆t)3

∆t
= 0

”Little-Oh” notation is used for approximations, but it can be subtle.
Hence, ”Little-Oh” notation will never be considered in this course.
The way I framed the Poisson assumptions is ”loose” compared to using
”little-oh” notation, but for a first course in statistics it is perfectly sufficient.
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Fin

Fin.
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