Continuous Random Variables: pdf's Engineering Statistics Section 4.1

Josh Engwer

TTU

26 February 2016

Josh Engwer (TTU)

Discrete & Continuous Random Variables (Definitions)

There are two types of random variables:

Definition

(Discrete Random Variable)

X is a **discrete random variable** \iff Supp(*X*) is countable.

i.e. The meaningful values of *X* comprise a subset of integers \mathbb{Z} or rationals \mathbb{Q} .

NOTE: Discrete random variables were explored in Chapter 3.

Definition

(Continuous Random Variable)

X is a **continuous random variable** \iff Supp(*X*) is uncountable.

i.e. The meaningful values of *X* comprise an interval or union of intervals or \mathbb{R} .

Continuous random variables will now be covered here in Chapter 4.

Continuous r.v.'s & Their Supports (Examples)

- Experiment: Randomly choose a point on unit square centered at (0,0).
 - $Supp(X) = \left[-\frac{1}{2}, \frac{1}{2}\right]$ X =x-coordinate \implies Y Magnitude of y-coord $Supp(Y) = [0, \frac{1}{2}]$ \equiv \implies
 - $Supp(Z) = [0, 1/\sqrt{2}]$ Z Distance to (0,0) \implies \equiv
 - $Supp(W) = [1/2, \sqrt{2}]$ W Distance to farthest corner \implies =
- Experiment: Randomly select two adults in a busy airport.
 - X = Height of 1st adult (in ft) \implies Supp(X) = [1.75, 9.00]Y = Height of 1st adult (in cm) \implies Supp(Y) = [54, 275]Ζ Height of 1st adult (in m) Supp(Z) = [0.54, 2.75]= \implies Height difference of W = Supp(W)= [-7.25, 7.25]the two adults (in ft)
- Experiment: Take note of the time when a call center phone rings.
 - Elapsed time until Χ = Supp(X)next phone call (in secs) Elapsed time until Y $\operatorname{Supp}(Y) = (0,\infty)$ \equiv next phone call (in hours)

 $(0,\infty)$

=

Measurements are Never 100% Accurate

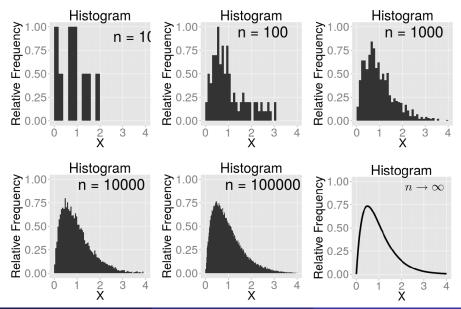
A height is reported as, say, 251.6 cm instead of 251.5786800233791427 cm! Also, there are a finite # of people, hence a finite # of heights to measure!

So why is a r.v. for a person's height considered continuous & not discrete??

Well, it turns out that in practice:

- Very large populations are well-approximated by continuous distributions.
- It's easier to mathematically work with continuous r.v.'s than discrete r.v.'s.

Very large pop's are well-approx'd by continuous dist's



Josh Engwer (TTU)

Definition

(Probability Density Function of a Continuous Random Variable)

Let *X* be a **continuous** random variable. Then, its **probability density function (pdf)**, which is denoted $f_X(x)$, is defined to be a function of the possible values of *X* such that:

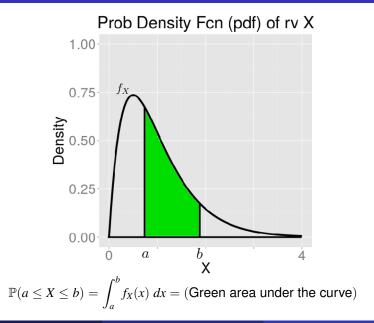
Non-negativity on its Support: $f_X(x) \ge 0$ $\forall x \in \text{Supp}(X)$ Zero outside of its Support: $f_X(x) = 0$ $\forall x \notin \text{Supp}(X)$

Universal Integral of Unity:

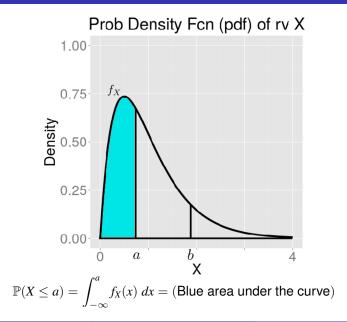
$$\int_{\operatorname{Supp}(X)} f_X(x) \, dx = 1$$

The graph of $f_X(x)$ is often called the **density curve** for random variable *X*.

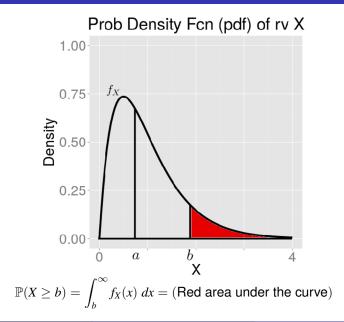
Probability of a Continuous r.v. via its pdf



Probability of a Continuous r.v. via its pdf



Probability of a Continuous r.v. via its pdf



Theorem

Let *X* be a continuous *r.v.* with $pdf_X(x)$. Let scalars a < b. Then:

$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1$$

$$\mathbb{P}(X = a) = 0$$

$$\mathbb{P}(a < X < b) = \mathbb{P}(a \le X \le b)$$

$$\mathbb{P}(a < X \le b) = \mathbb{P}(a \le X \le b)$$

$$\mathbb{P}(a \le X < b) = \mathbb{P}(a \le X \le b)$$

$$\mathbb{P}(X > b) = \mathbb{P}(X \ge b)$$

$$\mathbb{P}(X < a) = \mathbb{P}(X \le a)$$

PROOF:
$$\int_{-\infty}^{\infty} f_X(x) dx = \int_{\operatorname{Supp}(X)} f_X(x) dx + \int_{[\operatorname{Supp}(X)]^c} f_X(x) dx = 1 + 0 = 1$$

Theorem

Let *X* be a continuous *r.v.* with $pdf f_X(x)$. Let scalars a < b. Then:

$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1$$
$$\mathbb{P}(X=a) = 0$$

$$\mathbb{P}(a < X < b) = \mathbb{P}(a \le X \le b)$$

 $\mathbb{P}(a < X \le b) = \mathbb{P}(a \le X \le b)$
 $\mathbb{P}(a \le X < b) = \mathbb{P}(a \le X \le b)$

$\mathbb{P}(X > b)$	=	$\mathbb{P}(X \ge b)$
$\mathbb{P}(X < a)$	=	$\mathbb{P}(X \le a)$

PROOF:
$$\mathbb{P}(X=a) = \int_a^a f_X(x) \, dx = \left[F_X(x)\right]_{x=a}^{x=a} \stackrel{FTC}{=} F_X(a) - F_X(a) = 0$$

 $F_X(x)$ is the anti-derivative of $f_X(x)$ and will be explored in the next section.

Theorem

Let *X* be a continuous *r.v.* with $pdf_X(x)$. Let scalars a < b. Then:

$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1$$

$$\mathbb{P}(X=a) = 0$$

$$\mathbb{P}(a < X < b) = \mathbb{P}(a \leq X \leq b)$$

 $\mathbb{P}(a < X \leq b) = \mathbb{P}(a \leq X \leq b)$
 $\mathbb{P}(a \leq X < b) = \mathbb{P}(a \leq X \leq b)$
 $\mathbb{P}(X > b) = \mathbb{P}(X \geq b)$
 $\mathbb{P}(X < a) = \mathbb{P}(X < a)$

PROOF:

$$\mathbb{P}(X < a) = \mathbb{P}(X \le a) - \mathbb{P}(X = a) = \mathbb{P}(X \le a) - 0 = \mathbb{P}(X \le a)$$

Josh Engwer (TTU)

Theorem

Let *X* be a continuous *r.v.* with $pdf_X(x)$. Let scalars a < b. Then:

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$
$$\mathbb{P}(X = a) = 0$$
$$\mathbb{P}(a < X < b) = \mathbb{P}(a \le X \le b)$$
$$\mathbb{P}(a < X \le b) = \mathbb{P}(a \le X \le b)$$
$$\mathbb{P}(a \le X < b) = \mathbb{P}(a \le X \le b)$$
$$\mathbb{P}(X > b) = \mathbb{P}(X \ge b)$$
$$\mathbb{P}(X < a) = \mathbb{P}(X \le a)$$

PROOF: The rest follow in a similar fashion. QED

It's easier to mathematically work with continuous r.v.'s

Consider the **discrete** r.v. X with the following **pmf** & support:

$$p_X(k) = \frac{6}{\pi^2 k^2}, \quad \text{Supp}(X) = \{1, 2, 3, 4, \cdots\}$$

$$\mathbb{P}(X > 2) = \sum_{k=3}^{\infty} p_X(k) = \frac{6}{\pi^2} \sum_{k=3}^{\infty} \frac{1}{k^2} = \begin{pmatrix} \text{Requires Fourier Analysis} \\ \text{to sum!! (Diff Eqn II)} \end{pmatrix}$$

Consider the continuous r.v. X with the following pdf & support:

$$f_X(x) = \frac{1}{x^2}, \quad \mathsf{Supp}(X) = [1, \infty)$$
$$\mathbb{P}(X > 2) = \int_2^\infty f_X(x) \, dx = \int_2^\infty \frac{1}{x^2} \, dx = \left[-\frac{1}{x}\right]_{x=2}^{x \to \infty}$$
$$\stackrel{FTC}{=} \lim_{x \to \infty} \left(-\frac{1}{x}\right) - \left(-\frac{1}{(2)}\right) = 0 + \frac{1}{2} = \boxed{\frac{1}{2}}$$

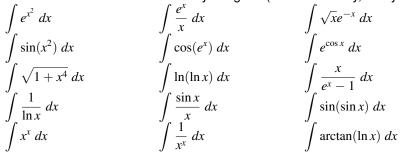
Nonelementary Integrals

Of course from CalcII some integrals cannot be exactly computed by hand:

Definition

A **nonelementary integral** is an integral whose antiderivative cannot be expressed in a finite closed form.

Here's a small list of nonelementary integrals (there are many, many more):



In statistics, most pdf's result in elementary integrals that can be computed. For the few pdf's that lead to nonelementary integrals, a table will be provided.

• Difference(s) in Notation:

CONCEPT	TEXTBOOK	SLIDES/OUTLINE
CONCEPT	NOTATION	NOTATION
Probability of Event	P(A)	$\mathbb{P}(A)$
Support of a r.v.	"All possible values of X"	Supp(X)
pdf of a r.v.	f(x)	$f_X(x)$

• Skip uniform random variables (pg 144)

- Uniform random variables are a special type of continuous rv.
- Uniform random variables will be formally covered in Section 4.3

Fin.