Continuous r.v.'s: cdf's, Expected Values Engineering Statistics Section 4.2

Josh Engwer

TTU

29 February 2016

Josh Engwer (TTU)

PART I:

CUMULATIVE DENSITY FUNCTION (CDF) OF A CONTINUOUS RANDOM VARIABLE

Cumulative Density Fcn (cdf) of a Continuous r.v.

Definition

(cdf of a Continuous Random Variable)

Let *X* be a **continuous** random variable with pdf $f_X(x)$. Then, its **cdf**, denoted as $F_X(x)$, is defined as follows:

$$F_X(x) := \mathbb{P}(X \le x) = \int_{-\infty}^x f_X(\xi) \ d\xi = \int_{-\infty}^x f_X(t) \ dt$$

Corollary

(cdf Axioms)

Let *X* be a **continuous** random variable. Then, its **cdf** $F_X(x)$, satisfies Eventually Zero (One) to the Left (Right): $\lim_{x \to -\infty} F_X(x) = 0$, $\lim_{x \to +\infty} F_X(x) = 1$ Non-decreasing: $x_1 \le x_2 \implies F_X(x_1) \le F_X(x_2)$ Continuous: $F_X \in C(\mathbb{R})$

<u>NOTATION:</u> ξ is the lowercase Greek letter "xi", pronounced (kuh)-SEE.

Plots of pdf & cdf of a continuous r.v.

Theorem

Let *X* be a **continuous** *r.v.* with cdf $F_X(x)$. Let scalars $a, b \in \mathbb{R}$ s.t. a < b. Then:

$$\mathbb{P}(X \le a) = \mathbb{P}(X < a) = F_X(a)$$

$$\mathbb{P}(a \le X \le b) = \mathbb{P}(a < X < b) = F_X(b) - F_X(a)$$

$$\mathbb{P}(a < X \le b) = \mathbb{P}(a \le X < b) = F_X(b) - F_X(a)$$

$$\mathbb{P}(X \ge b) = \mathbb{P}(X > b) = 1 - F_X(b)$$

Proposition

(Obtaining the pdf from a cdf of a continuous r.v.)

Let *X* be a continuous *r.v.* with $pdf_X(x)$ and $cdf F_X(x)$. Then: $F'_X(x) = f_X(x)$

PART II:

EXPECTED VALUE, VARIANCE, STANDARD DEVIATION OF A CONTINUOUS RANDOM VARIABLE

Definition

(Expected Value of a Continuous r.v.)

Let *X* be a **continuous** random variable with pdf $f_X(x)$. Then the **expected value** (AKA **mean**) of *X* is:

$$\mathbb{E}[X] := \int_{\mathsf{Supp}(X)} x \cdot f_X(x) \ dx$$

It's possible (but rare) that the expected value is **infinite**: $\mathbb{E}[X] = \infty$

<u>NOTATION</u>: The expected value of *X* is alternatively denoted by \overline{X} or μ_X .

Mean of a Continuous Distribution (Example)

The mean of a continuous distribution is the location of the fulcrum on the horizontal axis of pdf which balances the data. In this particular case, $\overline{X} = 1$. (dashed red line)

Definition

Let X be a **continuous** random variable with pdf $f_X(x)$. Let h(x) be a single-variable function. Then the **expected value** (AKA mean) of h(X) is:

$$\mathbb{E}[h(X)] := \int_{\mathsf{Supp}(X)} h(x) \cdot f_X(x) \ dx$$

It's possible (but rare) that the expected value is **infinite**: $\mathbb{E}[h(X)] = \pm \infty$

NOTATION: The expected value of h(X) is alternatively denoted by $\mu_{h(X)}$.

Definition

(Variance & Standard Deviation of a Continuous Random Variable)

Let *X* be a **continuous** random variable with pdf $f_X(x)$ and mean μ_X . Then the **variance** of *X* is:

$$\mathbb{V}[X] := \mathbb{E}[(X - \mu_X)^2] = \int_{\mathsf{Supp}(X)} (x - \mu_X)^2 \cdot f_X(x) \ dx$$

Moreover, the standard deviation of *X* is: $\sigma_X := \sqrt{\mathbb{V}[X]}$

It's possible (but rare) that the variance is **infinite**: $\mathbb{V}[X] = \infty$

<u>NOTATION</u>: The variance of *X* is alternatively denoted by σ_X^2 or Var(*X*).

An Easier Way to Compute Variance

Computing variances using the definition can be quite tedious! Fortunately, there's an equivalent formula that's easier to use:

Corollary

(Easier Formula for Variance)

Let *X* be a **continuous** random variable with $pdf_{f_X}(x)$. Then:

 $\mathbb{V}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

<u>**PROOF:**</u> Let $\mu_X \equiv \mathbb{E}[X]$. Then:

$$\mathbb{V}[X] := \int_{\mathsf{Supp}(X)} (x - \mu_X)^2 \cdot f_X(x) \, dx = \int_{\mathsf{Supp}(X)} (x^2 - 2x\mu_X + \mu_X^2) \cdot f_X(x) \, dx$$

$$= \int_{\operatorname{Supp}(X)} x^2 \cdot f_X(x) \, dx - 2\mu_X \int_{\operatorname{Supp}(X)} x \cdot f_X(x) \, dx + \mu_X^2 \int_{\operatorname{Supp}(X)} f_X(x) \, dx$$

$$\begin{array}{ll} := & \mathbb{E}[X^2] - 2\mu_X \mathbb{E}[X] + \mu_X^2 \cdot 1 = \mathbb{E}[X^2] - 2\mu_X(\mu_X) + \mu_X^2 \\ & = & \mathbb{E}[X^2] - 2\mu_X^2 + \mu_X^2 = \mathbb{E}[X^2] - \mu_X^2 = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \end{array}$$

Josh Engwer (TTU)

PART III:

QUANTILES/PERCENTILES, QUARTILES, MEDIAN OF A CONTINUOUS DISTRIBUTION

Quantiles/Percentiles & Median of a Continuous Dist.

Definition

(Quantile/Percentile & Median of a Continuous Distribution)

Let *X* be a **continuous** r.v. with pdf $f_X(x)$ & cdf $F_X(x)$, and let 0 . Then:

(1) $x_p \equiv$ The *p*-quantile of the distribution of *X* and is defined by

$$p = F_X(x_p) \iff p = \int_{-\infty}^{x_p} f_X(\xi) \ d\xi = \int_{-\infty}^{x_p} f_X(t) \ dt$$

i.e. Solve equation $p = F_X(x_p)$ for x_p .

(2) $x_p \equiv \text{The } (100p)$ -th percentile of the distribution of *X*.

e.g. $x_{0.37} \equiv$ The 0.37-quantile (37th percentile) of the distribution of X.

- (3) $x_{0.25} \equiv$ The 1st **quartile** (25th percentile) of the distribution of X.
- (4) $\widetilde{X} = x_{0.50} \equiv$ The **median** (50th percentile) of the distribution of *X*.
- (5) $x_{0.75} \equiv$ The 3rd **quartile** (75th percentile) of the distribution of X.

Median of Continuous Distribution (Example)

50% of the data is to the left of the median. (blue line)

95th Percentile of Continuous Distribution (Example)

When viewing the pdf of a continuous distribution (left plot), 95% of the data is to the left of the 95^{th} percentile. (blue line)

• Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Probability of Event	P(A)	$\mathbb{P}(A)$
Support of a r.v.	"All possible values of X"	Supp(X)
pdf of a r.v.	f(x)	$f_X(x)$
cdf of a r.v.	F(x)	$F_X(x)$
Expected Value of r.v.	E(X)	$\mathbb{E}[X]$
Variance of r.v.	V(X)	$\mathbb{V}[X]$
Median of r.v.	$\widetilde{\mu}$	$\widetilde{\mu}_X$
$(100p)^{th}$ Percentile of r.v.	$\eta(p)$	x_p

<u>NOTE:</u> η is the lower-case Greek letter "eta"

Fin.