Continuous r.v.'s: cdf's, Expected Values

Engineering Statistics

Section 4.2

Josh Engwer

TTU
29 February 2016

PART I:

CUMULATIVE DENSITY FUNCTION (CDF) OF A CONTINUOUS RANDOM VARIABLE

Cumulative Density Fcn (cdf) of a Continuous r.v.

Definition

(cdf of a Continuous Random Variable)
Let X be a continuous random variable with pdf $f_{X}(x)$.
Then, its cdf, denoted as $F_{X}(x)$, is defined as follows:

$$
F_{X}(x):=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} f_{X}(\xi) d \xi=\int_{-\infty}^{x} f_{X}(t) d t
$$

Corollary

(cdf Axioms)
Let X be a continuous random variable. Then, its cdf $F_{X}(x)$, satisfies
Eventually Zero (One) to the Left (Right): $\lim _{x \rightarrow-\infty} F_{X}(x)=0, \quad \lim _{x \rightarrow+\infty} F_{X}(x)=1$ Non-decreasing: Continuous:

$$
x_{1} \leq x_{2} \Longrightarrow F_{X}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right)
$$

$$
F_{X} \in C(\mathbb{R})
$$

NOTATION: ξ is the lowercase Greek letter "xi", pronounced (kuh)-SEE.

Plots of pdf \& cdf of a continuous r.v.

Probability Density Fcn (pdf)

Cumulative Density Fcn (cdf)

Computing Probabilities using a Continuous cdf

Theorem

Let X be a continuous r.v. with cdf $F_{X}(x)$. Let scalars $a, b \in \mathbb{R}$ s.t. $a<b$. Then:

$$
\begin{aligned}
& \mathbb{P}(X \leq a)=\mathbb{P}(X<a)=F_{X}(a) \\
& \mathbb{P}(a \leq X \leq b)=\mathbb{P}(a<X<b)=F_{X}(b)-F_{X}(a) \\
& \mathbb{P}(a<X \leq b)=\mathbb{P}(a \leq X<b)=F_{X}(b)-F_{X}(a) \\
& \mathbb{P}(X \geq b)=\mathbb{P}(X>b)=1-F_{X}(b)
\end{aligned}
$$

Proposition

(Obtaining the pdf from a cdf of a continuous r.v.)
Let X be a continuous r.v. with pdf $f_{X}(x)$ and cdf $F_{X}(x)$. Then: $F_{X}^{\prime}(x)=f_{X}(x)$

PART II:

EXPECTED VALUE, VARIANCE, STANDARD DEVIATION OF A CONTINUOUS RANDOM VARIABLE

Expected Value (Mean) of a Continuous r.v.

Definition

(Expected Value of a Continuous r.v.)
Let X be a continuous random variable with pdf $f_{X}(x)$.
Then the expected value (AKA mean) of X is:

$$
\mathbb{E}[X]:=\int_{\operatorname{Supp}(X)} x \cdot f_{X}(x) d x
$$

It's possible (but rare) that the expected value is infinite: $\mathbb{E}[X]=\infty$

NOTATION: The expected value of X is alternatively denoted by \bar{X} or μ_{X}.

Mean of a Continuous Distribution (Example)

Probability Density Fcn (pdf)

The mean of a continuous distribution is the location of the fulcrum on the horizontal axis of pdf which balances the data. In this particular case, $\bar{X}=1$. (dashed red line)

Expected Value (Mean) of Continuous Function of r.v.

Definition

Let X be a continuous random variable with pdf $f_{X}(x)$.
Let $h(x)$ be a single-variable function.
Then the expected value (AKA mean) of $h(X)$ is:

$$
\mathbb{E}[h(X)]:=\int_{\operatorname{Supp}(X)} h(x) \cdot f_{X}(x) d x
$$

It's possible (but rare) that the expected value is infinite: $\mathbb{E}[h(X)]= \pm \infty$

NOTATION: The expected value of $h(X)$ is alternatively denoted by $\mu_{h(X)}$.

Variance \& Standard Deviation of a Continuous r.v.

Definition

(Variance \& Standard Deviation of a Continuous Random Variable)
Let X be a continuous random variable with pdf $f_{X}(x)$ and mean μ_{X}. Then the variance of X is:

$$
\mathbb{V}[X]:=\mathbb{E}\left[\left(X-\mu_{X}\right)^{2}\right]=\int_{\operatorname{Supp}(X)}\left(x-\mu_{X}\right)^{2} \cdot f_{X}(x) d x
$$

Moreover, the standard deviation of X is: $\quad \sigma_{X}:=\sqrt{\mathbb{V}[X]}$
It's possible (but rare) that the variance is infinite: $\mathbb{V}[X]=\infty$

NOTATION: The variance of X is alternatively denoted by σ_{X}^{2} or $\operatorname{Var}(X)$.

An Easier Way to Compute Variance

Computing variances using the definition can be quite tedious! Fortunately, there's an equivalent formula that's easier to use:

Corollary

(Easier Formula for Variance)
Let X be a continuous random variable with pdf $f_{X}(x)$. Then:

$$
\mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
$$

PROOF: Let $\mu_{X} \equiv \mathbb{E}[X]$. Then:

$$
\begin{align*}
\mathbb{V}[X] & :=\int_{\operatorname{Supp}(X)}\left(x-\mu_{X}\right)^{2} \cdot f_{X}(x) d x=\int_{\operatorname{Supp}(X)}\left(x^{2}-2 x \mu_{X}+\mu_{X}^{2}\right) \cdot f_{X}(x) d x \\
& =\int_{\operatorname{Supp}(X)} x^{2} \cdot f_{X}(x) d x-2 \mu_{X} \int_{\operatorname{Supp}(X)} x \cdot f_{X}(x) d x+\mu_{X}^{2} \int_{\operatorname{Supp}(X)} f_{X}(x) d x \\
& :=\mathbb{E}\left[X^{2}\right]-2 \mu_{X} \mathbb{E}[X]+\mu_{X}^{2} \cdot 1=\mathbb{E}\left[X^{2}\right]-2 \mu_{X}\left(\mu_{X}\right)+\mu_{X}^{2} \\
& =\mathbb{E}\left[X^{2}\right]-2 \mu_{X}^{2}+\mu_{X}^{2}=\mathbb{E}\left[X^{2}\right]-\mu_{X}^{2}=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2} \quad \text { QED } \tag{QED}
\end{align*}
$$

PART III:

QUANTILES/PERCENTILES, QUARTILES, MEDIAN OF A CONTINUOUS DISTRIBUTION

Quantiles/Percentiles \& Median of a Continuous Dist.

Definition

(Quantile/Percentile \& Median of a Continuous Distribution)
Let X be a continuous r.v. with pdf $f_{X}(x) \& \operatorname{cdf} F_{X}(x)$, and let $0<p<1$. Then:
(1) $x_{p} \equiv$ The p-quantile of the distribution of X and is defined by

$$
p=F_{X}\left(x_{p}\right) \Longleftrightarrow p=\int_{-\infty}^{x_{p}} f_{X}(\xi) d \xi=\int_{-\infty}^{x_{p}} f_{X}(t) d t
$$

i.e. Solve equation $p=F_{X}\left(x_{p}\right)$ for x_{p}.
(2) $x_{p} \equiv$ The $(100 p)$-th percentile of the distribution of X.
e.g. $x_{0.37} \equiv$ The 0.37 -quantile ($37^{\text {th }}$ percentile) of the distribution of X.
(3) $x_{0.25} \equiv$ The $1^{s t}$ quartile ($25^{t h}$ percentile) of the distribution of X.
(4) $\widetilde{X}=x_{0.50} \equiv$ The median ($50^{\text {th }}$ percentile) of the distribution of X.
(5) $x_{0.75} \equiv$ The $3^{r d}$ quartile ($75^{\text {th }}$ percentile) of the distribution of X.

Median of Continuous Distribution (Example)

When viewing the pdf of a continuous distribution (left plot), 50% of the data is to the left of the median. (blue line)

$95^{\text {th }}$ Percentile of Continuous Distribution (Example)

Probability Density Fcn (pdf)

Cumulative Density Fcn (cdf)

When viewing the pdf of a continuous distribution (left plot), 95% of the data is to the left of the $95^{\text {th }}$ percentile. (blue line)

Textbook Logistics for Section 4.2

- Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Probability of Event	$P(A)$	$\mathbb{P}(A)$
Support of a r.v.	"All possible values of X "	$\operatorname{Supp}(X)$
pdf of a r.v.	$f(x)$	$f_{X}(x)$
cdf of a r.v.	$F(x)$	$F_{X}(x)$
Expected Value of r.v.	$E(X)$	$\mathbb{E}[X]$
Variance of r.v.	$V(X)$	$\mathbb{V}[X]$
Median of r.v.	$\widetilde{\mu}$	$\widetilde{\mu}_{X}$
$(100 p)^{\text {th }}$ Percentile of r.v.	$\eta(p)$	x_{p}

NOTE: η is the lower-case Greek letter "eta"

Fin.

