Sampling Distribution of a Statistic

Engineering Statistics Section 5.3

Josh Engwer

TTU

21 March 2016

PART I:

RANDOM SAMPLES

(A Priori) Samples vs. Samples-to-be-Collected

Recall from Chapter 1 the definition of a sample of a population:

Definition

A **sample** is a subset of a population.

Every sample encountered in Chapter 1 was an **a priori sample**. Just saying "sample" by itself will always translate to "a priori sample."

TYPE OF SAMPLE	NOTATION	HAS SAMPLE BEEN ALREADY COLLECTED?	
(a priori) Sample	$x: x_1, x_2, \ldots, x_n$	Yes	
Sample-to-be-Collected	X_1, X_2, \ldots, X_n	Νο	

By contrast, a **sample-to-be-collected** has not been collected yet. (as the name immediately suggests)

This means data points of a sample-to-be-collected have some <u>uncertainty</u>, and thus each data point is really a <u>random variable</u>!!

Statistical Inference methods to be encountered later in the course require that sample(s) to be collected must be of a very special kind:

otur	1117	nn.
em		
· · · ·		

(Random Sample)

A sample-to-be-collected X_1, \ldots, X_n is called a **random sample** if:

- the X_i 's are all <u>identical</u>:
 - If the X_i 's are <u>all discrete</u>, then the X_i 's all have the exact same pmf $p_X(k)$.
 - If the X_i's are <u>all continuous</u>, then the X_i's all have the exact same pdf
 - Regardless of random variable type, the X_i 's have the exact same cdf $F_X(x)$.
- 2 the X_i 's are all independent.

i.e. The rv's comprising the random sample are identical & independent.

 $f_X(x)$.

Examples of Random Samples

Random Sample of size n = 4 from a discrete population with pmf $p_X(k)$:

 $X_1, X_2, X_3, X_4 \stackrel{iid}{\sim} \mathsf{pmf} \ p_X(k)$

Random Sample of size n = 6 from a continuous population with pdf $f_X(x)$:

$$X_1, X_2, X_3, X_4, X_5, X_6 \stackrel{iid}{\sim} \mathsf{pdf}\, f_X(x)$$

Random Sample of size n = 3 from a population with cdf $F_X(x)$:

$$X_1, X_2, X_3 \stackrel{iid}{\sim} \mathsf{cdf} \ F_X(x)$$

NOTATION: "iid" is shorthand for "identically and independently distributed"

Examples of Random Samples

Random Sample of size n = 4 from a Binomial(5, 0.3) population:

 $X_1, X_2, X_3, X_4 \stackrel{iid}{\sim} \mathsf{Binomial}(5, 0.3)$

Random Sample of size n = 2 from a Normal(μ , σ^2) population:

 $X_1, X_2 \stackrel{iid}{\sim} \mathsf{Normal}(\mu, \sigma^2)$

Random Sample of size n = 3 from an Exponential($\lambda = 10$) population:

$$X_1, X_2, X_3 \stackrel{iid}{\sim} \mathsf{Exponential}(\lambda = 10)$$

NOTATION: "iid" is shorthand for "identically and independently distributed"

Careful Examination of a Random Sample

Random Sample of size n = 4 from a Binomial(5, 0.3) population:

$$X_1, X_2, X_3, X_4 \stackrel{iid}{\sim} \mathsf{Binomial}(5, 0.3)$$

What does this mean exactly??

• The *X_i*'s are <u>identical</u>, meaning the *X_i*'s have the exact same pmf:

•
$$p_{X_1}(k) = p_{X_2}(k) = p_{X_3}(k) = p_{X_4}(k) = {5 \choose k} 0.3^k \ 0.7^{5-k}$$

•
$$\text{Supp}(X_1) = \text{Supp}(X_2) = \text{Supp}(X_3) = \text{Supp}(X_4) = \{0, 1, 2, 3, 4, 5\}$$

• The X_i's are independent:

÷

$$\begin{array}{rcl} \mathbb{P}(X_1 = 3 \ \cap \ X_2 > 1) & = & \mathbb{P}(X_1 = 3) \cdot \mathbb{P}(X_2 > 1) \\ \mathbb{P}(X_2 \le 1 \ \cap \ X_4 \le 1) & = & \mathbb{P}(X_2 \le 1) \cdot \mathbb{P}(X_4 \le 1) \\ \mathbb{P}(X_1 > 3 \ \cap \ X_2 \le 4 \ \cap \ X_3 = 0) & = & \mathbb{P}(X_1 > 3) \cdot \mathbb{P}(X_2 \le 4) \cdot \mathbb{P}(X_3 = 0) \\ \mathbb{P}(X_1 > 2 \ \cap \ X_3 > 2 \ \cap \ X_4 > 2) & = & \mathbb{P}(X_1 > 2) \cdot \mathbb{P}(X_3 > 2) \cdot \mathbb{P}(X_4 > 2) \end{array}$$

:

Careful Examination of a Random Sample

Random Sample of size n = 2 from a Normal(μ , σ^2) population:

 $X_1, X_2 \stackrel{iid}{\sim} \mathsf{Normal}(\mu, \sigma^2)$

What does this mean exactly??

• The *X_i*'s are <u>identical</u>, meaning the *X_i*'s have the exact same cdf:

•
$$F_{X_1}(x) = F_{X_2}(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

•
$$\operatorname{Supp}(X_1) = \operatorname{Supp}(X_2) = (-\infty, \infty)$$

• The *X_i*'s are independent:

$$\begin{array}{lll} \mathbb{P}(X_1 = 3 \ \cap \ X_2 > 1) &= & \mathbb{P}(X_1 = 3) \cdot \mathbb{P}(X_2 > 1) \\ \mathbb{P}(X_1 \le 1 \ \cap \ X_2 \le 1) &= & \mathbb{P}(X_1 \le 1) \cdot \mathbb{P}(X_2 \le 1) \\ &: & : \end{array}$$

Careful Examination of a Random Sample

Random Sample of size n = 3 from an Exponential($\lambda = 10$) population:

$$X_1, X_2, X_3 \stackrel{iid}{\sim} \mathsf{Exponential}(\lambda = 10)$$

What does this mean exactly??

• The X_i 's are <u>identical</u>, meaning the X_i 's have the exact same pdf:

•
$$f_{X_1}(x) = f_{X_2}(x) = f_{X_3}(x) = 10e^{-10x}$$

÷

•
$$\operatorname{Supp}(X_1) = \operatorname{Supp}(X_2) = \operatorname{Supp}(X_3) = [0, \infty)$$

• The X_i's are independent:

$$\begin{array}{rcl} \mathbb{P}(X_1 = 3 \ \cap \ X_2 > 1) & = & \mathbb{P}(X_1 = 3) \cdot \mathbb{P}(X_2 > 1) \\ \mathbb{P}(X_2 \le 1 \ \cap \ X_3 \le 1) & = & \mathbb{P}(X_2 \le 1) \cdot \mathbb{P}(X_3 \le 1) \\ \mathbb{P}(X_1 > 3 \ \cap \ X_2 \le 4 \ \cap \ X_3 = 0) & = & \mathbb{P}(X_1 > 3) \cdot \mathbb{P}(X_2 \le 4) \cdot \mathbb{P}(X_3 = 0) \\ \mathbb{P}(X_1 > 2 \ \cap \ X_2 > 2 \ \cap \ X_3 > 2) & = & \mathbb{P}(X_1 > 2) \cdot \mathbb{P}(X_2 > 2) \cdot \mathbb{P}(X_3 > 2) \end{array}$$

÷

PART II:

SAMPLING DISTRIBUTION OF A STATISTIC OF A FINITE DISCRETE POPULATION

Statistic of a Random Sample

Recall from Chapter 1 the definition of a sample statistic:

Definition

A statistic of a sample is a meaningful characteristic of the sample.

More precisely, a statistic is a <u>function</u> of the data points of the sample.

	(A PRIORI) SAMPLE	RANDOM SAMPLE
	$x: x_1, x_2, \ldots, x_n$	X_1, X_2, \ldots, X_n
Sample Mean	$\overline{x} := \frac{x_1 + x_2 + \dots + x_n}{n}$	$\overline{X} := rac{X_1 + X_2 + \dots + X_n}{n}$
Sample Minimum	$x_{(1)} := \min\{x_1, x_2, \dots, x_n\}$	$X_{(1)} := \min\{X_1, X_2, \dots, X_n\}$
Sample Maximum	$x_{(n)} := \max\{x_1, x_2, \ldots, x_n\}$	$X_{(n)} := \max\{X_1, X_2, \ldots, X_n\}$
Sample Range	$x_R := x_{(n)} - x_{(1)}$	$X_R := X_{(n)} - X_{(1)}$
Sample Variance	$s^2 := \frac{1}{n-1} \sum_{k=1}^n (x_k - \overline{x})^2$	$S^2 := \frac{1}{n-1} \sum_{k=1}^n (X_k - \overline{X})^2$
Sample Total	$\sum x_k := x_1 + x_2 + \cdots + x_n$	$\sum X_k := X_1 + X_2 + \cdots + X_n$
Sample Proportion	x/n	X/n

Statistic of a Random Sample (Most Common)

	(A PRIORI) SAMPLE	RANDOM SAMPLE
	$x: x_1, x_2, \ldots, x_n$	X_1, X_2, \ldots, X_n
Sample Mean	\overline{x}	\overline{X}
Sample Median	ĩ	\widetilde{X}
10% Trimmed Mean	$x_{tr(10\%)}$	$X_{tr(10\%)}$
Sample Range	x _R	X _R
Sample Variance	<i>s</i> ²	S ²
Sample Std Dev	S	S
Interhinge Range	X _{IHR}	X _{IHR}
Order Statistics	$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$	$X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$
Sample Minimum	$x_{(1)}$	X(1)
Sample Maximum	$x_{(n)}$	$X_{(n)}$
Sample Total	$\sum x_k$	$\sum X_k$
Sample Proportion	x/n	X/n

Josh Engwer (TTU)

Sampling Distribution of a Statistic (Definition)

Given a random sample, then since...

- ...each data point is a random variable, and...
- ...every statistic is a function of the data points, ...

...that implies that every statistic of a random sample is a random variable!!

This means that a statistic of a random sample follows a distribution:

Definition

Let X_1, \ldots, X_n be a random sample of some population. Let *T* be a statistic of the random sample.

Then the sampling distribution of statistic T is

- the pmf $p_T(k)$ if the population is discrete.
- the pdf $f_T(x)$ if the population is continuous.

Moreover, the statistic T has its own support, Supp(T). Finally, the sampling distribution of T can be visualized as

- a density histogram if the population is discrete.
- a density curve if the population is continuous.

WEX 5-3-1:Let $X_1, X_2 \stackrel{iid}{\sim}$ Bernoulli(0.4).Then, $X_1 \& X_2$ follow the pmf: $k \parallel 0 \mid 1$
 $p_X(k) \mid 0.6 \mid 0.4$
Construct the sampling distribution for the following statistics:

Sample Mean, Sample Variance, Sample Total, Sample Min, Sample Max

<u>WEX 5-3-1</u>: Let $X_1, X_2 \stackrel{iid}{\sim}$ Bernoulli(0.4).

Then, $X_1 \& X_2$ follow the pmf: $\begin{array}{c|c} k & 0 & 1 \\ \hline p_X(k) & 0.6 & 0.4 \end{array}$ Construct the sampling distribution for the following statistics:

Sample Mean, Sample Variance, Sample Total, Sample Min, Sample Max

 WEX 5-3-1:
 Let $X_1, X_2 \stackrel{iid}{\sim}$ Bernoulli(0.4).

 Then, $X_1 \& X_2$ follow the pmf:
 $k \parallel 0 \mid 1$
 $X_1 = j_1 \mid X_2 = j_2 \mid \mathbb{P}(X_1 = j_1 \cap X_2 = j_2) \mid \overline{X} \mid S^2 \mid X_1 + X_2 \mid X_{(1)} \mid X_{(n)}$

 0
 0

 0
 1

 1
 0

 1
 1

Enumerate all meaningful simultaneous values of $X_1 \& X_2$. (Order Matters!!)

 $\begin{aligned} & \mathsf{Supp}(X_1) = \{0,1\} \implies & \mathsf{The meaningful values for } X_1 \text{ are 0 and 1.} \\ & \mathsf{Supp}(X_2) = \{0,1\} \implies & \mathsf{The meaningful values for } X_2 \text{ are 0 and 1.} \end{aligned}$

WEX 5-3-1: Let $X_1, X_2 \stackrel{iid}{\sim} \text{Bernoulli}(0.4)$.

Then, $X_1 \& X_2$ follow the pmf: $\frac{k}{p_X(k)} = 0.6 + 0.4$

Compute the joint probabilities using the fact that X_1, X_2 are independent:

$$\mathbb{P}(X_1 = 0 \cap X_2 = 0) \stackrel{iid}{=} p_X(0) \cdot p_X(0) = (0.6)(0.6) = \mathbf{0.36}$$

$$\mathbb{P}(X_1 = 0 \cap X_2 = 1) \stackrel{iid}{=} p_X(0) \cdot p_X(1) = (0.6)(0.4) = \mathbf{0.24}$$

$$\mathbb{P}(X_1 = 1 \cap X_2 = 0) \stackrel{iid}{=} p_X(1) \cdot p_X(0) = (0.4)(0.6) = \mathbf{0.24}$$

$$\mathbb{P}(X_1 = 1 \cap X_2 = 1) \stackrel{iid}{=} p_X(1) \cdot p_X(1) = (0.4)(0.4) = \mathbf{0.16}$$

WEX 5-3-1: Let $X_1, X_2 \stackrel{iid}{\sim}$ Bernoulli(0.4).

$$X_1 \& X_2$$
 follow the pmf:
 k
 0
 1

 $X_1 = j_1$
 $X_2 = j_2$
 $\mathbb{P}(X_1 = j_1 \cap X_2 = j_2)$
 \overline{X}
 S^2
 $X_1 + X_2$
 $X_{(1)}$
 $X_{(n)}$
 0
 0
 0.36
 0
 0
 0
 0
 0

 0
 1
 0.24
 1
 0
 0.24
 1
 1
 0

 1
 0.16
 1
 0.16
 1
 1
 1
 1
 1

Compute the statistics for each meaningful simultaneous values of $X_1 \& X_2$:

$$\overline{X} = \frac{X_1 + X_2}{n} = \frac{0 + 0}{2} = 0$$

$$S^2 = \frac{1}{n - 1} \left[(X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 \right] = \frac{1}{2 - 1} \left[(0 - 0)^2 + (0 - 0)^2 \right] = 0$$

$$X_1 + X_2 = 0 + 0 = 0$$

$$X_{(1)} = \min\{X_1, X_2\} = \min\{0, 0\} = 0$$

$$X_{(n)} = \max\{X_1, X_2\} = \max\{0, 0\} = 0$$

Josh Engwer (TTU)

<u>WEX 5-3-1</u>: Let $X_1, X_2 \stackrel{iid}{\sim} \text{Bernoulli}(0.4)$.

K
 0
 1

 Then,
$$X_1 \& X_2$$
 follow the pmf:
 $\frac{k}{p_X(k)} \| \begin{array}{c} 0 & 1 \\ \hline 0.6 & 0.4 \end{array}$

 X_1 = j_1 | X_2 = j_2 | $\mathbb{P}(X_1 = j_1 \cap X_2 = j_2) | \overline{X} | S^2 | X_1 + X_2 | X_{(1)} | X_{(n)}$

 0
 0
 0.36
 0
 0
 0
 0

 0
 1
 0.24
 0.5
 0.5
 1
 0
 1

 1
 0
 0.24
 0
 0
 0
 1
 0
 1

 1
 0
 0.24
 0
 0
 0
 1
 0
 1

 1
 0
 0.24
 0
 0
 0
 1
 0
 1

Compute the statistics for each meaningful simultaneous values of $X_1 \& X_2$:

$$\overline{X} = \frac{X_1 + X_2}{n} = \frac{0 + 1}{2} = 0.5$$

$$S^2 = \frac{1}{n - 1} \left[(X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 \right] = \frac{1}{2 - 1} \left[(0 - 0.5)^2 + (1 - 0.5)^2 \right] = 0.5$$

$$\begin{array}{rcl} X_1 + X_2 &=& 0+1 = 1 \\ X_{(1)} &=& \min\{X_1, X_2\} = \min\{0, 1\} = 0 \\ X_{(n)} &=& \max\{X_1, X_2\} = \max\{0, 1\} = 1 \end{array}$$

<u>WEX 5-3-1</u>: Let $X_1, X_2 \stackrel{iid}{\sim} \text{Bernoulli}(0.4)$.

k
 0
 1

 Then,
$$X_1 \& X_2$$
 follow the pmf:
 k
 0
 1

 X_1 = j_1
 X_2 = j_2
 \overline{X}
 S²
 X_1 + X_2
 X_{(1)}
 X_{(n)}

 0
 0
 0
 0
 0
 0
 0
 0
 C
 X_1 = j_1
 X_2 = j_2
 \overline{X}
 S²
 X_1 + X_2
 X_{(1)}
 X_{(n)}

 0
 0
 0
 0
 0
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

 |

Compute the statistics for each meaningful simultaneous values of $X_1 \& X_2$:

$$\overline{X} = \frac{X_1 + X_2}{n} = \frac{1 + 0}{2} = 0.5$$

$$S^2 = \frac{1}{n - 1} \left[(X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 \right] = \frac{1}{2 - 1} \left[(1 - 0.5)^2 + (0 - 0.5)^2 \right] = 0.5$$

$$\begin{array}{rcl} X_1 + X_2 &=& 1 + 0 = 1 \\ X_{(1)} &=& \min\{X_1, X_2\} = \min\{1, 0\} = 0 \\ X_{(n)} &=& \max\{X_1, X_2\} = \max\{1, 0\} = 1 \end{array}$$

<u>WEX 5-3-1</u>: Let $X_1, X_2 \stackrel{iid}{\sim}$ Bernoulli(0.4).

Then,
$$X_1 \& X_2$$
 follow the pmf: $\begin{array}{c|c} k & 0 & 1 \\ \hline p_X(k) & 0.6 & 0.4 \end{array}$

$X_1 = j_1$	$X_2 = j_2$	$\left \mathbb{P}(X_1 = j_1 \cap X_2 = j_2) \right $	\overline{X}	S^2	$X_1 + X_2$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	0.5	0.5	1	0	1
1	1	0.16	1	0	2	1	1

Compute the statistics for each meaningful simultaneous values of $X_1 \& X_2$:

$$\overline{X} = \frac{X_1 + X_2}{n} = \frac{1+1}{2} = 1$$

$$S^2 = \frac{1}{n-1} \left[(X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 \right] = \frac{1}{2-1} \left[(1-1)^2 + (1-1)^2 \right] = 0$$

$$X_1 + X_2 = 1 + 1 = 2$$

$$X_{(1)} = \min\{X_1, X_2\} = \min\{1, 1\} = 1$$

$$X_{(n)} = \max\{X_1, X_2\} = \max\{1, 1\} = 1$$

W	WEX 5-3-1: Let $X_1, X_2 \stackrel{iid}{\sim}$ Bernoulli(0.4).							
	Then, $X_1 \& X_2$ follow the pmf:			$\frac{k}{p_X(k)}$) 0.	$\frac{1}{6}$ 0.4		
	$X_1 = j_1$	$X_2 = j_2$	$\left \mathbb{P}(X_1 = j_1 \cap X_2 = j_2) \right $	\overline{X}	S^2	$X_1 + X_2$	$X_{(1)}$	$X_{(n)}$
	0	0	0.36	0	0	0	0	0
	0	1	0.24	0.5	0.5	1	0	1
	1	0	0.24	0.5	0.5	1	0	1
	1	1	0.16	1	0	2	1	1

WEX 5-3-1:
 Let
$$X_1, X_2 \stackrel{iid}{\sim}$$
 Bernoulli(0.4).

 Then, $X_1 \& X_2$ follow the pmf:
 $k \parallel 0 \mid 1$
 $X_1 = j_1 \mid X_2 = j_2 \mid \mathbb{P}(X_1 = j_1 \cap X_2 = j_2) \mid \overline{X} \mid S^2 \mid X_1 + X_2 \mid X_{(1)} \mid X_{(n)}$

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 0
 1
 0
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

 1

 1

WEX 5-3-1:
 Let
$$X_1, X_2 \stackrel{iid}{\sim}$$
 Bernoulli(0.4).

 Then, $X_1 \& X_2$ follow the pmf:
 $k \parallel 0 \mid 1$
 $X_1 = j_1 \mid X_2 = j_2 \mid \mathbb{P}(X_1 = j_1 \cap X_2 = j_2) \mid \overline{X} \mid S^2 \mid X_1 + X_2 \mid X_{(1)} \mid X_{(n)}$

 0
 0
 0.36
 0
 0
 0
 0

 0
 1
 0.24
 0.5
 0.5
 1
 0
 1

 1
 0.16
 1
 0
 2
 1
 1

WE	<u>NEX 5-3-1:</u> Let $X_1, X_2 \stackrel{iid}{\sim}$ Bernoulli(0.4).							
		Then, X	$X_1 \& X_2$ follow the pmf:	$\frac{k}{p_X(k)}$) 0.	$\frac{0}{6}$ 0.4		
Χ	$K_1 = j_1$	$X_2 = j_2$	$\left \mathbb{P}(X_1 = j_1 \cap X_2 = j_2) \right $	\overline{X}	S^2	$X_1 + X_2$	$X_{(1)}$	$X_{(n)}$
	0	0	0.36	0	0	0	0	0
	0	1	0.24	0.5	0.5	1	0	1
	1	0	0.24	0.5	0.5	1	0	1
	1	1	0.16	1	0	2	1	1

<u>NEX 5-3-1:</u> Let $X_1, X_2 \stackrel{iid}{\sim}$ Bernoulli(0.4).								
		Then, X	$X_1 \& X_2$ follow the pmf:	$\frac{k}{p_X(k)}$) 0.	$\frac{0}{6}$ 0.4		
X_1	$= j_1$	$X_2 = j_2$	$\left \mathbb{P}(X_1 = j_1 \cap X_2 = j_2) \right $	\overline{X}	S^2	$X_1 + X_2$	$X_{(1)}$	$X_{(n)}$
	0	0	0.36	0	0	0	0	0
	0	1	0.24	0.5	0.5	1	0	1
	1	0	0.24	0.5	0.5	1	0	1
	1	1	0.16	1	0	2	1	1

W	<u>WEX 5-3-1</u> : Let $X_1, X_2 \stackrel{iid}{\sim}$ Bernoulli(0.4).							
		Then, $X_1 \& X_2$ follow the pmf:			$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	$X_1 = j_1$	$X_2 = j_2$	$\left \mathbb{P}(X_1 = j_1 \cap X_2 = j_2) \right $	\overline{X}	S^2	$X_1 + X_2$	$X_{(1)}$	$X_{(n)}$
	0	0	0.36	0	0	0	0	0
	0	1	0.24	0.5	0.5	1	0	1
	1	0	0.24	0.5	0.5	1	0	1
	1	1	0.16	1	0	2	1	1

$$\frac{k}{p_{S^2}(k)}$$

WEX 5-3-1:
 Let
$$X_1, X_2 \stackrel{iid}{\sim}$$
 Bernoulli(0.4).

 Then, $X_1 \& X_2$ follow the pmf:
 $k \parallel 0 \mid 1$
 $X_1 = j_1 \mid X_2 = j_2 \mid \mathbb{P}(X_1 = j_1 \cap X_2 = j_2) \mid \overline{X} \mid S^2 \mid X_1 + X_2 \mid X_{(1)} \mid X_{(n)}$

 0
 0
 0
 0
 0
 0
 0
 0

 0
 1
 0.24
 0.5
 0.5
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 2
 1
 1

WEX 5-3-1:
 Let
$$X_1, X_2 \stackrel{iid}{\sim}$$
 Bernoulli(0.4).

 Then, $X_1 \& X_2$ follow the pmf:
 $k \parallel 0 \mid 1$
 $X_1 = j_1 \mid X_2 = j_2 \mid \mathbb{P}(X_1 = j_1 \cap X_2 = j_2) \mid \overline{X} \mid S^2 \mid X_1 + X_2 \mid X_{(1)} \mid X_{(n)}$

 0
 0
 0.36
 0
 0
 0
 0

 0
 1
 0.24
 0.5
 0.5
 1
 0
 1

 1
 0.16
 1
 0
 2
 1
 1

WEX 5-3-1:
 Let
$$X_1, X_2 \stackrel{iid}{\sim}$$
 Bernoulli(0.4).

 Then, $X_1 \& X_2$ follow the pmf:
 $k \parallel 0 \mid 1$
 $X_1 = j_1 \mid X_2 = j_2 \mid \mathbb{P}(X_1 = j_1 \cap X_2 = j_2) \mid \overline{X} \mid S^2 \mid X_1 + X_2 \mid X_{(1)} \mid X_{(n)}$

 0
 0
 0.36
 0
 0
 0
 0

 0
 1
 0.24
 0.5
 0.5
 1
 0
 1

 1
 0
 0.24
 1
 0
 2
 1
 1

W	WEX 5-3-1: Let $X_1, X_2 \stackrel{iid}{\sim}$ Bernoulli(0.4).							
		Then, X	$X_1 \& X_2$ follow the pmf:	$\frac{k}{p_X(k)}$	() 0.	$\frac{1}{6}$ 0.4		
	$X_1 = j_1$	$X_2 = j_2$	$\mathbb{P}(X_1=j_1 \cap X_2=j_2)$	\overline{X}	<i>S</i> ²	$X_1 + X_2$	$X_{(1)}$	$X_{(n)}$
	0	0	0.36	0	0	0	0	0
	0	1	0.24	0.5	0.5	1	0	1
	1	0	0.24	0.5	0.5	1	0	1
	1	1	0.16	1	0	2	1	1
	\therefore Sampling Dist. of \overline{X} is the pmf $\begin{array}{c c} k & 0 & 0.5 & 1 \\ \hline p_{\overline{X}}(k) & 0.36 & 0.48 & 0.16 \end{array}$							
\therefore Sampling Dist. of S^2 is the pmf $\begin{array}{c c} k & 0 & 0.5 \\ \hline p_{S^2}(k) & 0.52 & 0.48 \end{array}$								
	Samplin	g Dist. of	$X_1 + X_2$ is the pmf $-p$	$\frac{k}{x_{1}+x_{2}}(k$) 0.1) 1 36 0.48	2 0.16	

WEX 5-3-1:
 Let
$$X_1, X_2 \stackrel{iid}{\sim}$$
 Bernoulli(0.4).

 Then, $X_1 \& X_2$ follow the pmf:
 k
 0
 1
 $X_1 = j_1$
 $X_2 = j_2$
 $\mathbb{P}(X_1 = j_1 \cap X_2 = j_2)$
 \overline{X}
 S^2
 $X_1 + X_2$
 $X_{(1)}$
 $X_{(n)}$
 0
 0
 0.36
 0
 0
 0
 0
 0
 1
 0
 0.24
 0.5
 0.5
 1
 0
 1
 1
 0
 0.24
 0.5
 0.5
 1
 0
 1
 1
 0
 0.24
 0.5
 0.5
 1
 0
 1
 \therefore Sampling Dist. of $X_{(1)}$ is the pmf
 k
 0
 1
 0
 1
 0
 1
 \therefore Sampling Dist. of $X_{(n)}$ is the pmf
 k
 0
 1
 0
 1

 $\begin{array}{l} \underline{\text{WEX 5-3-1:}} \ \text{Let } X_1, X_2 \stackrel{iid}{\sim} \text{Bernoulli}(0.4). \\ & \text{Then, } X_1 \And X_2 \text{ follow the pmf:} \quad \frac{k}{p_X(k)} \parallel \frac{0}{0.6} \mid \frac{1}{0.4} \\ \\ \implies \mu_X = \mathbb{E}[X] = \sum_{k \in \text{Supp}(X)} k \cdot p_X(k) = (0)(0.6) + (1)(0.4) = 0.4 \\ \\ \mathbb{E}[X^2] = \sum_{k \in \text{Supp}(X)} k^2 \cdot p_X(k) = (0^2)(0.6) + (1^2)(0.4) = 0.4 \\ \\ \implies \sigma_X^2 = \mathbb{V}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = 0.4 - (0.4)^2 = 0.24 \end{array}$

Expected Value & Variance of a Statistic

WEX 5-3-1: Let $X_1, X_2 \stackrel{iid}{\sim}$ Bernoulli(0.4). Then, $X_1 \& X_2$ follow the pmf: $\begin{array}{c|c} k & 0 & 1 \\ \hline p_x(k) & 0.6 & 0.4 \end{array}$ $\mu_X = \mathbb{E}[X] = 0.4$ $\sigma_Y^2 = \mathbb{V}[X] = 0.24$ \therefore Sampling Dist. of \overline{X} is the pmf $\begin{array}{c|c} k & 0 & 0.5 & 1 \\ \hline p_{\overline{y}}(k) & 0.36 & 0.48 & 0.16 \end{array}$ $\implies \mu_{\overline{X}} = \mathbb{E}\left[\overline{X}\right] = \sum k \cdot p_{\overline{X}}(k) = (0)(0.36) + (0.5)(0.48) + (1)(0.16) = 0.4$ $k \in \operatorname{Supp}(\overline{X})$ $\mathbb{E}\left|\overline{X}^{2}\right| = \sum k^{2} \cdot p_{\overline{X}}(k) = (0^{2})(0.36) + (0.5^{2})(0.48) + (1^{2})(0.16) = 0.28$ $k \in \operatorname{Supp}(\overline{X})$ $\implies \sigma_{\overline{X}}^2 = \mathbb{V}\left[\overline{X}\right] = \mathbb{E}\left|\overline{X}^2\right| - \left(\mathbb{E}\left[\overline{X}\right]\right)^2 = 0.28 - (0.4)^2 = 0.12$

 $\begin{array}{l|l} \underline{\textbf{WEX 5-3-1:}} & \text{Let } X_1, X_2 \stackrel{iid}{\sim} \text{Bernoulli}(0.4). \\ & \text{Then, } X_1 \And X_2 \text{ follow the pmf:} & \frac{k}{p_X(k)} \parallel \underbrace{0}_{0.6} \mid 1 \\ & \mu_X = \mathbb{E}[X] = 0.4 \\ & \sigma_X^2 = \mathbb{V}[X] = 0.24 \\ & \therefore \text{ Sampling Dist. of } \overline{X} \text{ is the pmf } \frac{k}{p_{\overline{X}}(k)} \parallel \underbrace{0}_{0.36} \mid 0.48 \mid 0.16 \\ & \mu_{\overline{X}} = \mathbb{E}\left[\overline{X}\right] = 0.4 \\ & \sigma_{\overline{X}}^2 = \mathbb{V}\left[\overline{X}\right] = 0.12 \end{array}$

Proposition

(Construction of the Sampling Distribution of a Statistic)

- <u>GIVEN</u>: Random sample X_1, \ldots, X_n of <u>finite discrete</u> population w/ pmf $p_X(k)$. <u>TASK</u>: Find the sampling distribution $p_T(k)$ of statistic *T* of random sample.
- (1) Enumerate all meaningful simultaneous values of the X_i's. Use the support of X₁, Supp(X₁), as guidance. (Order Matters!!)
- (2) For each enumeration of meaningful simultaneous values of the X_i 's, compute the statistic T & the joint probability using iid & pmf $p_X(k)$:

 $\mathbb{P}(X_1 = j_1 \cap X_2 = j_2 \cap \cdots \cap X_n = j_n) \stackrel{iid}{=} p_X(j_1) \cdot p_X(j_2) \cdots p_X(j_n)$

- (3) The support of statistic T, Supp(T), is the set of all values of T attained.
- (4) The probability of statistic T being a value in its support is the sum of the joint probabilities corresponding to that value of T.

Textbook Logistics for Section 5.3

• Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Probability of Event	P(A)	$\mathbb{P}(A)$
Support of a r.v.	"All possible values of X"	Supp(X)
pmf of a r.v.	$p_X(x)$	$p_X(k)$
Expected Value of r.v.	E(X)	$\mathbb{E}[X]$
Variance of r.v.	V(X)	$\mathbb{V}[X]$
Sample Total	T_o	$\sum X_k$
pmf of Sample Mean	$p_{\overline{X}}(\overline{x})$	$p_{\overline{X}}(k)$
pmf of Sample Variance	$p_{S^2}(s^2)$	$p_{S^2}(k)$

Ignore EXAMPLE 5.22 (pg 225)

- The statistic of sample of a continuous population involves multiple integrals!
- Multivariable Calculus (CalcIII) will never show up on homework and exams.

- Skip "Simulation Experiments" section (pgs 225-229)
 - Simulations were briefly encountered in Ch2 when developing the "deep" interpretation of Probability.
 - Simulations will be briefly encountered again in section 5.4

Fin.