Sampling Distribution of a Statistic
 Engineering Statistics
 Section 5.3

Josh Engwer

TTU
21 March 2016

PART I:

RANDOM SAMPLES

(A Priori) Samples vs. Samples-to-be-Collected

Recall from Chapter 1 the definition of a sample of a population:

Definition

A sample is a subset of a population.
Every sample encountered in Chapter 1 was an a priori sample. Just saying "sample" by itself will always translate to "a priori sample."

TYPE OF SAMPLE	NOTATION	HAS SAMPLE BEEN ALREADY COLLECTED?
(a priori) Sample	$x: x_{1}, x_{2}, \ldots, x_{n}$	Yes
Sample-to-be-Collected	$X_{1}, X_{2}, \ldots, X_{n}$	No

By contrast, a sample-to-be-collected has not been collected yet. (as the name immediately suggests)
This means data points of a sample-to-be-collected have some uncertainty, and thus each data point is really a random variable!!

Random Samples

Statistical Inference methods to be encountered later in the course require that sample(s) to be collected must be of a very special kind:

Definition

(Random Sample)
A sample-to-be-collected X_{1}, \ldots, X_{n} is called a random sample if:
(1) the X_{i} 's are all identical:

- If the X_{i} 's are all discrete, then the X_{i} 's all have the exact same pmf $p_{X}(k)$.
- If the X_{i} 's are all continuous, then the X_{i} 's all have the exact same pdf $f_{X}(x)$.
- Regardless of random variable type, the X_{i} 's have the exact same cdf $F_{X}(x)$.
(2) the X_{i} 's are all independent.
i.e. The rv's comprising the random sample are identical \& independent.

Examples of Random Samples

Random Sample of size $n=4$ from a discrete population with pmf $p_{X}(k)$:

$$
X_{1}, X_{2}, X_{3}, X_{4} \stackrel{i i d}{\sim} \text { pmf } p_{X}(k)
$$

Random Sample of size $n=6$ from a continuous population with pdf $f_{X}(x)$:

$$
X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6} \stackrel{i i d}{\sim} \operatorname{pdf} f_{X}(x)
$$

Random Sample of size $n=3$ from a population with $\operatorname{cdf} F_{X}(x)$:

$$
X_{1}, X_{2}, X_{3} \stackrel{i i d}{\sim} \operatorname{cdf} F_{X}(x)
$$

NOTATION: "iid" is shorthand for "identically and independently distributed"

Examples of Random Samples

Random Sample of size $n=4$ from a Binomial($5,0.3$) population:

$$
X_{1}, X_{2}, X_{3}, X_{4} \stackrel{\text { iid }}{\sim} \operatorname{Binomial}(5,0.3)
$$

Random Sample of size $n=2$ from a $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ population:

$$
X_{1}, X_{2} \stackrel{\text { iid }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

Random Sample of size $n=3$ from an Exponential $(\lambda=10)$ population:

$$
X_{1}, X_{2}, X_{3} \stackrel{i i d}{\sim} \operatorname{Exponential}(\lambda=10)
$$

NOTATION: "iid" is shorthand for "identically and independently distributed"

Careful Examination of a Random Sample

Random Sample of size $n=4$ from a Binomial $(5,0.3)$ population:

$$
X_{1}, X_{2}, X_{3}, X_{4} \stackrel{\text { iid }}{\sim} \operatorname{Binomial}(5,0.3)
$$

What does this mean exactly??

- The X_{i} 's are identical, meaning the X_{i} 's have the exact same pmf:
- $p_{X_{1}}(k)=p_{X_{2}}(k)=p_{X_{3}}(k)=p_{X_{4}}(k)=\binom{5}{k} 0.3^{k} 0.7^{5-k}$
- $\operatorname{Supp}\left(X_{1}\right)=\operatorname{Supp}\left(X_{2}\right)=\operatorname{Supp}\left(X_{3}\right)=\operatorname{Supp}\left(X_{4}\right)=\{0,1,2,3,4,5\}$
- The X_{i} 's are independent:

$$
\begin{array}{clc}
\mathbb{P}\left(X_{1}=3 \cap X_{2}>1\right) & = & \mathbb{P}\left(X_{1}=3\right) \cdot \mathbb{P}\left(X_{2}>1\right) \\
\mathbb{P}\left(X_{2} \leq 1 \cap X_{4} \leq 1\right) & = & \mathbb{P}\left(X_{2} \leq 1\right) \cdot \mathbb{P}\left(X_{4} \leq 1\right) \\
\mathbb{P}\left(X_{1}>3 \cap X_{2} \leq 4 \cap X_{3}=0\right) & = & \mathbb{P}\left(X_{1}>3\right) \cdot \mathbb{P}\left(X_{2} \leq 4\right) \cdot \mathbb{P}\left(X_{3}=0\right) \\
\mathbb{P}\left(X_{1}>2 \cap X_{3}>2 \cap X_{4}>2\right) & =\mathbb{P}\left(X_{1}>2\right) \cdot \mathbb{P}\left(X_{3}>2\right) \cdot \mathbb{P}\left(X_{4}>2\right)
\end{array}
$$

Careful Examination of a Random Sample

Random Sample of size $n=2$ from a $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ population:

$$
X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

What does this mean exactly??

- The X_{i} 's are identical, meaning the X_{i} 's have the exact same cdf:
- $F_{X_{1}}(x)=F_{X_{2}}(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)$
- $\operatorname{Supp}\left(X_{1}\right)=\operatorname{Supp}\left(X_{2}\right)=(-\infty, \infty)$
- The X_{i} 's are independent:

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}=3 \cap X_{2}>1\right)=\mathbb{P}\left(X_{1}=3\right) \cdot \mathbb{P}\left(X_{2}>1\right) \\
& \mathbb{P}\left(X_{1} \leq 1 \cap X_{2} \leq 1\right)=\mathbb{P}\left(X_{1} \leq 1\right) \cdot \mathbb{P}\left(X_{2} \leq 1\right)
\end{aligned}
$$

Careful Examination of a Random Sample

Random Sample of size $n=3$ from an Exponential $(\lambda=10)$ population:

$$
X_{1}, X_{2}, X_{3} \stackrel{\text { iid }}{\sim} \operatorname{Exponential}(\lambda=10)
$$

What does this mean exactly??

- The X_{i} 's are identical, meaning the X_{i} 's have the exact same pdf:
- $f_{X_{1}}(x)=f_{X_{2}}(x)=f_{X_{3}}(x)=10 e^{-10 x}$
- $\operatorname{Supp}\left(X_{1}\right)=\operatorname{Supp}\left(X_{2}\right)=\operatorname{Supp}\left(X_{3}\right)=[0, \infty)$
- The X_{i} 's are independent:

$$
\begin{array}{clc}
\mathbb{P}\left(X_{1}=3 \cap X_{2}>1\right) & = & \mathbb{P}\left(X_{1}=3\right) \cdot \mathbb{P}\left(X_{2}>1\right) \\
\mathbb{P}\left(X_{2} \leq 1 \cap X_{3} \leq 1\right) & = & \mathbb{P}\left(X_{2} \leq 1\right) \cdot \mathbb{P}\left(X_{3} \leq 1\right) \\
\mathbb{P}\left(X_{1}>3 \cap X_{2} \leq 4 \cap X_{3}=0\right) & = & \mathbb{P}\left(X_{1}>3\right) \cdot \mathbb{P}\left(X_{2} \leq 4\right) \cdot \mathbb{P}\left(X_{3}=0\right) \\
\mathbb{P}\left(X_{1}>2 \cap X_{2}>2 \cap X_{3}>2\right) & = & \mathbb{P}\left(X_{1}>2\right) \cdot \mathbb{P}\left(X_{2}>2\right) \cdot \mathbb{P}\left(X_{3}>2\right)
\end{array}
$$

PART II:

SAMPLING DISTRIBUTION OF A STATISTIC OF A FINITE DISCRETE POPULATION

Statistic of a Random Sample

Recall from Chapter 1 the definition of a sample statistic:

Definition

A statistic of a sample is a meaningful characteristic of the sample.
More precisely, a statistic is a function of the data points of the sample.

	(A PRIORI) SAMPLE $x: x_{1}, x_{2}, \ldots, x_{n}$	RANDOM SAMPLE $X_{1}, X_{2}, \ldots, X_{n}$
Sample Mean	$\bar{x}:=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$	$\bar{X}:=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}$
Sample Minimum	$x_{(1)}:=\min \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$	$X_{(1)}:=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
Sample Maximum	$x_{(n)}:=\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$	$X_{(n)}:=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
Sample Range	$x_{R}:=x_{(n)}-x_{(1)}$	$X_{R}:=X_{(n)}-X_{(1)}$
Sample Variance	$s^{2}:=\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)^{2}$	$S^{2}:=\frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}$
Sample Total	$\sum x_{k}:=x_{1}+x_{2}+\cdots x_{n}$	$\sum X_{k}:=X_{1}+X_{2}+\cdots X_{n}$
Sample Proportion	x / n	X / n

Statistic of a Random Sample (Most Common)

	(A PRIORI) SAMPLE $x: x_{1}, x_{2}, \ldots, x_{n}$	RANDOM SAMPLE $X_{1}, X_{2}, \ldots, X_{n}$
Sample Mean	\bar{x}	\bar{X}
Sample Median	\widetilde{x}	\widetilde{X}
10\% Trimmed Mean	$x_{\operatorname{tr}(10 \%)}$	$X_{t r(10 \%)}$
Sample Range	x_{R}	X_{R}
Sample Variance	s^{2}	S^{2}
Sample Std Dev	s	S
Interhinge Range	$x_{I H R}$	$X_{I H R}$
Order Statistics	$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$	$X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$
Sample Minimum	$x_{(1)}$	$X_{(1)}$
Sample Maximum	$x_{(n)}$	$X_{(n)}$
Sample Total	$\sum x_{k}$	$\sum X_{k}$
Sample Proportion	x / n	X / n

Sampling Distribution of a Statistic (Definition)

Given a random sample, then since...
(1) ...each data point is a random variable, and...
(2) ...every statistic is a function of the data points, ...
...that implies that every statistic of a random sample is a random variable!!
This means that a statistic of a random sample follows a distribution:

Definition

Let X_{1}, \ldots, X_{n} be a random sample of some population.
Let T be a statistic of the random sample.
Then the sampling distribution of statistic T is

- the pmf $p_{T}(k)$ if the population is discrete.
- the pdf $f_{T}(x)$ if the population is continuous.

Moreover, the statistic T has its own support, $\operatorname{Supp}(T)$.
Finally, the sampling distribution of T can be visualized as

- a density histogram if the population is discrete.
- a density curve if the population is continuous.

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$.

Then, $X_{1} \& X_{2}$ follow the pmf: | k | 0 | 1 |
| :---: | :---: | :---: |
| $p_{X}(k)$ | 0.6 | 0.4 |

Construct the sampling distribution for the following statistics:
Sample Mean, Sample Variance, Sample Total, Sample Min, Sample Max

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$.

Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

Construct the sampling distribution for the following statistics:
Sample Mean, Sample Variance, Sample Total, Sample Min, Sample Max

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{\text { iid }}{\sim} \operatorname{Bernoulli}(0.4)$.

Then, $X_{1} \& X_{2}$ follow the pmf: | k | 0 | 1 |
| :---: | :---: | :---: |
| $p_{X}(k)$ | 0.6 | 0.4 |

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
$\mathbf{0}$	$\mathbf{0}$						
$\mathbf{0}$	$\mathbf{1}$						
$\mathbf{1}$	$\mathbf{0}$						
$\mathbf{1}$	$\mathbf{1}$						

Enumerate all meaningful simultaneous values of $X_{1} \& X_{2}$. (Order Matters!!)
$\operatorname{Supp}\left(X_{1}\right)=\{0,1\} \Longrightarrow$ The meaningful values for X_{1} are 0 and 1 .
$\operatorname{Supp}\left(X_{2}\right)=\{0,1\} \Longrightarrow$ The meaningful values for X_{2} are 0 and 1 .

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{\text { iid }}{\sim} \operatorname{Bernoulli}(0.4)$.
Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36					
0	1	$\mathbf{0 . 2 4}$					
1	0	$\mathbf{0 . 2 4}$					
1	1	$\mathbf{0 . 1 6}$					

Compute the joint probabilities using the fact that X_{1}, X_{2} are independent:

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}=0 \cap X_{2}=0\right) \stackrel{i i d}{=} p_{X}(0) \cdot p_{X}(0)=(0.6)(0.6)=\mathbf{0 . 3 6} \\
& \mathbb{P}\left(X_{1}=0 \cap X_{2}=1\right) \stackrel{i i d d}{=} p_{X}(0) \cdot p_{X}(1)=(0.6)(0.4)=\mathbf{0 . 2 4} \\
& \mathbb{P}\left(X_{1}=1 \cap X_{2}=0\right) \stackrel{i i d}{=} p_{X}(1) \cdot p_{X}(0)=(0.4)(0.6)=\mathbf{0 . 2 4} \\
& \mathbb{P}\left(X_{1}=1 \cap X_{2}=1\right) \stackrel{i i d d}{=} p_{X}(1) \cdot p_{X}(1)=(0.4)(0.4)=\mathbf{0 . 1 6}
\end{aligned}
$$

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$.
Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24					
1	0	0.24					
1	1	0.16					

Compute the statistics for each meaningful simultaneous values of $X_{1} \& X_{2}$:

$$
\begin{aligned}
\bar{X} & =\frac{X_{1}+X_{2}}{n}=\frac{0+0}{2}=0 \\
S^{2} & =\frac{1}{n-1}\left[\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}\right]=\frac{1}{2-1}\left[(0-0)^{2}+(0-0)^{2}\right]=0 \\
X_{1}+X_{2} & =0+0=0 \\
X_{(1)} & =\min \left\{X_{1}, X_{2}\right\}=\min \{0,0\}=0 \\
X_{(n)} & =\max \left\{X_{1}, X_{2}\right\}=\max \{0,0\}=0
\end{aligned}
$$

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$.
Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24					
1	1	0.16					

Compute the statistics for each meaningful simultaneous values of $X_{1} \& X_{2}$:

$$
\begin{aligned}
\bar{X} & =\frac{X_{1}+X_{2}}{n}=\frac{0+1}{2}=0.5 \\
S^{2} & =\frac{1}{n-1}\left[\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}\right]=\frac{1}{2-1}\left[(0-0.5)^{2}+(1-0.5)^{2}\right]=0.5 \\
X_{1}+X_{2} & =0+1=1 \\
X_{(1)} & =\min \left\{X_{1}, X_{2}\right\}=\min \{0,1\}=0 \\
X_{(n)} & =\max \left\{X_{1}, X_{2}\right\}=\max \{0,1\}=1
\end{aligned}
$$

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$.
Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	0.5	0.5	1	0	1
1	1	0.16					

Compute the statistics for each meaningful simultaneous values of $X_{1} \& X_{2}$:

$$
\begin{aligned}
\bar{X} & =\frac{X_{1}+X_{2}}{n}=\frac{1+0}{2}=0.5 \\
S^{2} & =\frac{1}{n-1}\left[\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}\right]=\frac{1}{2-1}\left[(1-0.5)^{2}+(0-0.5)^{2}\right]=0.5 \\
X_{1}+X_{2} & =1+0=1 \\
X_{(1)} & =\min \left\{X_{1}, X_{2}\right\}=\min \{1,0\}=0 \\
X_{(n)} & =\max \left\{X_{1}, X_{2}\right\}=\max \{1,0\}=1
\end{aligned}
$$

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$.
Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	0.5	0.5	1	0	1
1	1	0.16	1	0	2	1	1

Compute the statistics for each meaningful simultaneous values of $X_{1} \& X_{2}$:

$$
\begin{aligned}
\bar{X} & =\frac{X_{1}+X_{2}}{n}=\frac{1+1}{2}=1 \\
S^{2} & =\frac{1}{n-1}\left[\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}\right]=\frac{1}{2-1}\left[(1-1)^{2}+(1-1)^{2}\right]=0 \\
X_{1}+X_{2} & =1+1=2 \\
X_{(1)} & =\min \left\{X_{1}, X_{2}\right\}=\min \{1,1\}=1 \\
X_{(n)} & =\max \left\{X_{1}, X_{2}\right\}=\max \{1,1\}=1
\end{aligned}
$$

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$. Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	0.5	0.5	1	0	1
1	1	0.16	1	0	2	1	1

\therefore Sampling Dist. of \bar{X} is the pmf:

k		
$p_{\bar{X}}(k)$		

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$. Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	$\mathbf{0}$	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	0.5	0.5	1	0	1
1	1	0.16	1	0	2	1	1

\therefore Sampling Dist. of \bar{X} is the pmf:

k	0	
$p_{\bar{X}}(k)$	0.36	

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$. Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	$\mathbf{0 . 5}$	0.5	1	0	1
1	1	0.16	1	0	2	1	1

\therefore Sampling Dist. of \bar{X} is the pmf:

k	0	$\mathbf{0 . 5}$	
$p_{\bar{X}}(k)$	0.36	$0.24+\mathbf{0 . 2 4}$	

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$. Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	0.5	0.5	1	0	1
1	1	0.16	$\mathbf{1}$	0	2	1	1

\therefore Sampling Dist. of \bar{X} is the pmf:

k	0	0.5	$\mathbf{1}$
$p_{\bar{X}}(k)$	0.36	0.48	$\mathbf{0 . 1 6}$

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$. Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	0.5	0.5	1	0	1
1	1	0.16	1	0	2	1	1

\therefore Sampling Dist. of \bar{X} is the pmf:

k	0	0.5	1
$p_{\bar{X}}(k)$	0.36	0.48	0.16

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$. Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	0.5	0.5	1	0	1
1	1	0.16	1	0	2	1	1

\therefore Sampling Dist. of S^{2} is the pmf:

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$. Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	$\mathbf{0}$	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	0.5	0.5	1	0	1
1	1	0.16	1	$\mathbf{0}$	2	1	1

\therefore Sampling Dist. of S^{2} is the pmf:

k	0
$p_{S^{2}}(k)$	$0.36+0.16$

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{\text { iid }}{\sim} \operatorname{Bernoulli}(0.4)$. Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	0.5	$\mathbf{0 . 5}$	1	0	1
1	1	0.16	1	0	2	1	1

\therefore Sampling Dist. of S^{2} is the pmf:

k	0	0.5
$p_{S^{2}}(k)$	0.52	$0.24+0.24$

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{\text { iid }}{\sim} \operatorname{Bernoulli}(0.4)$. Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	0.5	0.5	1	0	1
1	1	0.16	1	0	2	1	1

\therefore Sampling Dist. of S^{2} is the pmf:

$$
\begin{array}{c||c|c}
k & 0 & 0.5 \\
\hline p_{S^{2}}(k) & 0.52 & 0.48
\end{array} \Longrightarrow \operatorname{Supp}\left(S^{2}\right)=\{0,0.5\}
$$

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$.
Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	0.5	0.5	1	0	1
1	1	0.16	1	0	2	1	1

\therefore Sampling Dist. of \bar{X} is the pmf

k	0	0.5	1
$p_{\bar{X}}(k)$	0.36	0.48	0.16

\therefore Sampling Dist. of S^{2} is the pmf | k | 0 | 0.5 |
| :---: | :---: | :---: |
| $p_{S^{2}}(k)$ | 0.52 | 0.48 |

\therefore Sampling Dist. of $X_{1}+X_{2}$ is the pmf | k | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $p_{X_{1}+X_{2}}(k)$ | 0.36 | 0.48 | 0.16 |

Sampling Distribution of a Statistic (Example)

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$.
Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$X_{1}=j_{1}$	$X_{2}=j_{2}$	$\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2}\right)$	\bar{X}	S^{2}	$X_{1}+X_{2}$	$X_{(1)}$	$X_{(n)}$
0	0	0.36	0	0	0	0	0
0	1	0.24	0.5	0.5	1	0	1
1	0	0.24	0.5	0.5	1	0	1
1	1	0.16	1	0	2	1	1

\therefore Sampling Dist. of $X_{(1)}$ is the pmf $\frac{k}{k} |$| | 0 | 1 |
| :---: | :---: | :---: |
| $p_{X_{(1)}}(k)$ | 0.84 | 0.16 |

\therefore Sampling Dist. of $X_{(n)}$ is the pmf | k | 0 | 1 |
| :---: | :---: | :---: |
| $p_{X_{(n)}}(k)$ | 0.36 | 0.64 |

Expected Value \& Variance of a Statistic

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$.

Then, $X_{1} \& X_{2}$ follow the pmf: | k | 0 | 1 |
| :---: | :---: | :---: |
| $p_{X}(k)$ | 0.6 | 0.4 |

$\Longrightarrow \mu_{X}=\mathbb{E}[X]=\sum_{k \in \operatorname{Supp}(X)} k \cdot p_{X}(k)=(0)(0.6)+(1)(0.4)=0.4$
$\mathbb{E}\left[X^{2}\right]=\sum_{k \in \operatorname{Supp}(X)} k^{2} \cdot p_{X}(k)=\left(0^{2}\right)(0.6)+\left(1^{2}\right)(0.4)=0.4$
$\Longrightarrow \sigma_{X}^{2}=\mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=0.4-(0.4)^{2}=0.24$

Expected Value \& Variance of a Statistic

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$.
Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$$
\mu_{X}=\mathbb{E}[X]=0.4 \quad \sigma_{X}^{2}=\mathbb{V}[X]=0.24
$$

\therefore Sampling Dist. of \bar{X} is the pmf

k	0	0.5	1
$p_{\bar{X}}(k)$	0.36	0.48	0.16

$\Longrightarrow \mu_{\bar{X}}=\mathbb{E}[\bar{X}]=\sum_{k \in \operatorname{Supp}(\bar{X})} k \cdot p_{\bar{X}}(k)=(0)(0.36)+(0.5)(0.48)+(1)(0.16)=0.4$
$\mathbb{E}\left[\bar{X}^{2}\right]=\sum_{k \in \operatorname{Supp}(\bar{X})} k^{2} \cdot p_{\bar{X}}(k)=\left(0^{2}\right)(0.36)+\left(0.5^{2}\right)(0.48)+\left(1^{2}\right)(0.16)=0.28$
$\Longrightarrow \sigma_{\bar{X}}^{2}=\mathbb{V}[\bar{X}]=\mathbb{E}\left[\bar{X}^{2}\right]-(\mathbb{E}[\bar{X}])^{2}=0.28-(0.4)^{2}=0.12$

Expected Value \& Variance of a Statistic

WEX 5-3-1: Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(0.4)$. Then, $X_{1} \& X_{2}$ follow the pmf:

k	0	1
$p_{X}(k)$	0.6	0.4

$$
\mu_{X}=\mathbb{E}[X]=0.4 \quad \sigma_{X}^{2}=\mathbb{V}[X]=0.24
$$

\therefore Sampling Dist. of \bar{X} is the pmf | k | 0 | 0.5 | 1 |
| :---: | :---: | :---: | :---: |
| $p_{\bar{X}}(k)$ | 0.36 | 0.48 | 0.16 |

$$
\mu_{\bar{X}}=\mathbb{E}[\bar{X}]=0.4 \quad \sigma_{\bar{X}}^{2}=\mathbb{V}[\bar{X}]=0.12
$$

Sampling Distribution of a Statistic (Procedure)

Proposition

(Construction of the Sampling Distribution of a Statistic)
GIVEN: Random sample X_{1}, \ldots, X_{n} of finite discrete population w/ pmf $p_{X}(k)$. TASK: Find the sampling distribution $p_{T}(k)$ of statistic T of random sample.
(1) Enumerate all meaningful simultaneous values of the X_{i} 's. Use the support of $X_{1}, \operatorname{Supp}\left(X_{1}\right)$, as guidance. (Order Matters!!)
(2) For each enumeration of meaningful simultaneous values of the X_{i} 's, compute the statistic T \& the joint probability using iid \& pmf $p_{X}(k)$:

$$
\mathbb{P}\left(X_{1}=j_{1} \cap X_{2}=j_{2} \cap \cdots \cap X_{n}=j_{n}\right) \stackrel{i i d}{=} p_{X}\left(j_{1}\right) \cdot p_{X}\left(j_{2}\right) \cdots p_{X}\left(j_{n}\right)
$$

(3) The support of statistic $T, \operatorname{Supp}(T)$, is the set of all values of T attained.
(4) The probability of statistic T being a value in its support is the sum of the joint probabilities corresponding to that value of T.

Textbook Logistics for Section 5.3

- Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Probability of Event	$P(A)$	$\mathbb{P}(A)$
Support of a r.v.	"All possible values of X "	$\operatorname{Supp}(X)$
pmf of a r.v.	$p_{X}(x)$	$p_{X}(k)$
Expected Value of r.v.	$E(X)$	$\mathbb{E}[X]$
Variance of r.v.	$V(X)$	$\mathbb{V}[X]$
Sample Total	T_{o}	$\sum X_{k}$
pmf of Sample Mean	$p_{\bar{X}}(\bar{x})$	$p_{\bar{X}}(k)$
pmf of Sample Variance	$p_{S^{2}}\left(s^{2}\right)$	$p_{S^{2}}(k)$

Textbook Logistics for Section 5.3

- Ignore EXAMPLE 5.22 (pg 225)
- The statistic of sample of a continuous population involves multiple integrals!
- Multivariable Calculus (CalcIII) will never show up on homework and exams.
- Skip "Simulation Experiments" section (pgs 225-229)
- Simulations were briefly encountered in Ch2 when developing the "deep" interpretation of Probability.
- Simulations will be briefly encountered again in section 5.4

Fin.

