Point Estimation: Unbiased Estimators, Std Error

Engineering Statistics Section 6.1

Josh Engwer

TTU

25 March 2016

1-Sample Point Estimation

Point Estimation is a key building block of Statistical Inference:

Definition

Given a random sample X_1, \ldots, X_n from a population with parameter θ .

Then a **point estimator** $\hat{\theta}$ of parameter θ is a suitable statistic *T* of sample:

$$\widehat{\theta} = T(X_1,\ldots,X_n)$$

Recall from Chapter 5 that a statistic T is a <u>function</u> of the random sample.

<u>NOTE:</u> Often there are several point estimators for a population parameter.

POPULATION PARAMETER	POINT ESTIMATOR(S)
Mean μ	$\widehat{\mu} := \overline{X}, \ \widehat{\mu} := \widetilde{X}, \ \widehat{\mu} := \overline{X}_{tr(10\%)}$
Proportion p	$\widehat{p} := X/n$
Variance σ^2	$\widehat{\sigma}^2 := S^2$

2-Sample Point Estimation

Point Estimation is a key building block of Statistical Inference:

Definition

Given a random sample X_1, \ldots, X_n from a population with parameter θ .

Then a **point estimator** $\hat{\theta}$ of parameter θ is a suitable statistic *T* of sample:

$$\widehat{\theta} = T(X_1,\ldots,X_n)$$

Recall from Chapter 5 that a statistic T is a <u>function</u> of the random sample.

<u>NOTE:</u> Often there are several point estimators for a population parameter.

Random sample X_1, \ldots, X_{n_1} from population with mean μ_1 & variance σ_1^2 Random sample Y_1, \ldots, Y_{n_2} from population with mean μ_2 & variance σ_2^2

POPULATION PARAMETER	POINT ESTIMATOR(S)
Mean Difference $\mu_1 - \mu_2$	$\widehat{\mu}_1 - \widehat{\mu}_2 := \overline{X} - \overline{Y}$
Proportion Difference $p_1 - p_2$	$\widehat{p}_1 - \widehat{p}_2 := X/n_1 - Y/n_2$
Variance Ratio σ_1^2/σ_2^2	$\widehat{\sigma}_1^2 / \widehat{\sigma}_2^2 := rac{(n_1 - 1)S_1^2}{(n_2 - 1)S_2^2}$

How to determine if a point estimator is any good?

Definition

Given a population with parameter θ .

Then a point estimator $\hat{\theta}$ is an **unbiased estimator** of θ if $\mathbb{E}[\hat{\theta}] = \theta$

Otherwise, the point estimator is **biased** with a **bias** of Bias[$\hat{\theta}$] := $\mathbb{E}[\hat{\theta}] - \theta$

i.e. A point estimator is unbiased if its sampling distribution is always "centered" at the true value of the population parameter.

If Bias[$\hat{\theta}$] < 0, then $\hat{\theta}$ tends to <u>underestimate</u> the population parameter value. If Bias[$\hat{\theta}$] > 0, then $\hat{\theta}$ tends to <u>overestimate</u> the population parameter value.

Biased & Unbiased Point Estimators (Visually)

The two curves are the pdf's of the sampling distributions of $\hat{\theta}_1$ and $\hat{\theta}_2$

An Unbiased Estimator of Population Mean μ

Not too surprisingly, the sample mean is an unbiased estimator of the population mean:

Proposition

Given a random sample X_1, \ldots, X_n from a population with mean μ .

Then \overline{X} is an unbiased estimator of μ .

PROOF: Use the definition & properties of expected value:

$$\mathbb{E}[\overline{X}] = \mathbb{E}\left[\frac{1}{n}\sum_{k=1}^{n}X_{k}\right] = \frac{1}{n} \cdot \mathbb{E}\left[\sum_{k=1}^{n}X_{k}\right] = \frac{1}{n}\sum_{k=1}^{n}\mathbb{E}[X_{k}]$$

$$= \frac{1}{n}\sum_{k=1}^{n}\mu = \frac{1}{n}\left[n\mu\right] = \mu$$

 \therefore Since $\mathbb{E}[\overline{X}] = \mu$, \overline{X} is an unbiased estimator of μ

Under certain conditions, the sample median and trimmed means are also unbiased estimators of the population mean:

Proposition

Given a random sample X_1, \ldots, X_n from a <u>symmetric continuous</u> population with mean μ .

Then \overline{X} , \widetilde{X} , $\overline{X}_{tr(10\%)}$, $\overline{X}_{tr(25\%)}$ are unbiased estimators of μ .

PROOF: Beyond the scope of this course.

Proposition

Let random variable $X \sim Binomial(n, p)$.

Then sample proportion X/n is an unbiased estimator of pop. proportion p.

<u>**PROOF:**</u> Recall the expected value of a Binomial(n, p) rv: $\mathbb{E}[X] = np$

$$\mathbb{E}[X/n] = \mathbb{E}\left[\frac{X}{n}\right] = \frac{1}{n} \cdot \mathbb{E}[X] = \frac{1}{n}[np] = p$$

 \therefore Since $\mathbb{E}[X/n] = p$, X/n is an unbiased estimator of p

An Unbiased Estimator of Population Variance σ^2

The sample variance is an unbiased estimator of the population variance:

Proposition

Given a random sample X_1, \ldots, X_n from a population with mean μ and variance σ^2 .

Then S^2 is an unbiased estimator of σ^2 .

<u>PROOF</u>: $\mathbb{V}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$, $\mathbb{E}[X] = \mu$, $\mathbb{V}[X] = \sigma^2$, $\mathbb{E}[\overline{X}] = \mu$, $\mathbb{V}[\overline{X}] = \sigma^2/n$

$$\begin{split} \mathbb{E}[S^2] &= \mathbb{E}\left[\frac{1}{n-1}\sum_{k=1}^{n}(X_k - \overline{X})^2\right] = \frac{1}{n-1}\mathbb{E}\left[\sum_{k=1}^{n}\left[X_k^2 - 2\overline{X}X_k + (\overline{X})^2\right]\right] \\ &= \frac{1}{n-1}\mathbb{E}\left[\sum_{k=1}^{n}X_k^2 - 2\overline{X}\sum_{k=1}^{n}X_k + \sum_{k=1}^{n}(\overline{X})^2\right] \\ &= \frac{1}{n-1}\mathbb{E}\left[\sum_{k=1}^{n}X_k^2 - 2\overline{X}(n\overline{X}) + n(\overline{X})^2\right] = \frac{1}{n-1}\mathbb{E}\left[\sum_{k=1}^{n}X_k^2 - n(\overline{X})^2\right] \\ &= \frac{1}{n-1}\left[\sum_{k=1}^{n}\mathbb{E}[X_k^2] - n\mathbb{E}[\overline{X}^2]\right] = \frac{1}{n-1}\left[\sum_{k=1}^{n}\left[\mathbb{V}[X_k] + (\mathbb{E}[X_k])^2\right] - n\mathbb{E}[\overline{X}^2]\right] \\ &= \frac{1}{n-1}\left[n\sigma^2 + n\mu^2 - n\left[\mathbb{V}[\overline{X}] + (\mathbb{E}[\overline{X}])^2\right]\right] \\ &= \frac{1}{n-1}\left[n\sigma^2 + n\mu^2 - n\left[\sigma^2/n + \mu^2\right]\right] = \frac{1}{n-1}\left[n\sigma^2 + n\mu^2 - \sigma^2 - n\mu^2\right] \\ &= \frac{1}{n-1}\left[(n-1)\sigma^2\right] \\ &= \sigma^2 \end{split}$$

 $\therefore \mathbb{E}[S^2] = \sigma^2 \implies S^2$ is an unbiased estimator of σ^2

The "best" unbiased estimator is the one that varies the least:

Definition

The unbiased estimator of a parameter with the smallest <u>variance</u> is called the **uniformly minimum variance unbiased estimator (UMVUE)**.

Theorem

Let random sample $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Normal}(\mu, \sigma^2)$. Then \overline{X} is the UMVUE for μ .

<u>PROOF:</u> Beyond the scope of this course.

UMVUE (Visually)

The two curves are the pdf's of the sampling distributions of the estimators

The **standard error** of a point estimator is a crucial piece of many Statistical Inference methods:

Definition

The standard error of a point estimator $\hat{\theta}$ is $\sigma_{\hat{\theta}} := \sqrt{\mathbb{V}[|\hat{\theta}|]}$

The **estimated standard error** of a point estimator, denoted $\hat{\sigma}_{\hat{\theta}}$, is the value of the standard error $\sigma_{\hat{\theta}}$ when any unknown parameters involved in its expression have themselves been estimated.

Standard Error of \overline{X} is $\sigma_{\overline{X}} = \sigma/\sqrt{n}$

Estimated Standard Error of \overline{X} is $\widehat{\sigma}_{\overline{X}} = \widehat{\sigma}/\sqrt{n} = s/\sqrt{n}$

(Estimated) Standard Errors of the other common point estimators are encountered in the 6.1 Outline, 6.1 Homework, and the textbook.

The following properties of expected & variance of a random sample are useful when finding standard errors:

Proposition

Let X_1, \ldots, X_n be a random sample from a population and $c_1, \ldots, c_n \neq 0$. Then:

(i)
$$\mathbb{E}[c_1X_1 + \dots + c_nX_n] = c_1\mathbb{E}[X_1] + \dots + c_n\mathbb{E}[X_n]$$

(ii) $\mathbb{V}[c_1X_1 + \dots + c_nX_n] = c_1^2\mathbb{V}[X_1] + \dots + c_n^2\mathbb{V}[X_n]$
(iii) $\mathbb{E}[X_1 - X_2] = \mathbb{E}[X_1] - \mathbb{E}[X_2]$
(iv) $\mathbb{V}[X_1 - X_2] = \mathbb{V}[X_1] + \mathbb{V}[X_2]$

PROOF:

(iii)
$$\mathbb{E}[X_1 - X_2] = \mathbb{E}[X_1 + (-1)X_2] \stackrel{(i)}{=} \mathbb{E}[X_1] + (-1)\mathbb{E}[X_2] = \mathbb{E}[X_1] - \mathbb{E}[X_2]$$

(iv)
$$\mathbb{V}[X_1 - X_2] = \mathbb{V}[X_1 + (-1)X_2] \stackrel{(ii)}{=} \mathbb{V}[X_1] + (-1)^2 \mathbb{V}[X_2] = \mathbb{V}[X_1] + \mathbb{V}[X_2]$$

• Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Probability of Event	P(A)	$\mathbb{P}(A)$
pmf with parameter	$p_X(x;\theta)$	$p_X(k; heta)$
pdf with parameter	$f(x; \theta)$	$f_X(x; heta)$
Expected Value of r.v.	E(X)	$\mathbb{E}[X]$
Variance of r.v.	V(X)	$\mathbb{V}[X]$
Bias of Estimator $\widehat{\theta}$	(none)	Bias[$\widehat{\theta}$]
"Best" Unbiased Estimator	MVUE	UMVUE

Textbook Logistics for Section 6.1

- Skip the "Some Complications" section (pgs 257-258)
 - TLDR: The best estimator in one scenario may not be the best in others.
 - Perhaps read the details of this section at the end of this course.
- Ignore the notion of **censoring** [EXAMPLE 6.8 (pg 258)]
 - Censoring means the value of a data point is only partially known
 - e.g. An analog produce scale can only weigh up to 20 lbs of produce, and someone places more than 20 lbs of produce on the scale. All a statistician would know is that particular data point has a value greater than 20 lbs.
 - e.g. When measuring the lifetimes of a random sample of components, sometimes it's preferred to only measure the first couple component failures instead of waiting for all the components in the sample to fail.
 - Censoring is beyond the scope of this course.
- Ignore bootstrap sampling & estimation [EXAMPLE 6.11 (pg 260)]
 - Bootstrap Sampling is useful when a point estimator's expression is either impossible to find or far too complicated to use.
 - Bootstrap Sampling is a numerical method in Statistics.
 - Bootstrap Sampling is beyond the scope of this course.

Fin.