Large-Sample Cl's for any Pop. Mean/Proportion

Engineering Statistics

Section 7.2

Josh Engwer

TTU

01 April 2016

z Critical Values

A key component to some Cl's is the z critical value:

Definition

$z_{\alpha / 2}^{*}$ is called a z critical value of the std normal distribution such that its upper-tail probability is exactly its subscript value $\alpha / 2$:

$$
\mathbb{P}\left(Z>z_{\alpha / 2}^{*}\right)=\alpha / 2
$$

IMPORTANT: Do not confuse z critical value $z_{\alpha / 2}^{*}$ with the z percentile $z_{\alpha / 2}$:

$$
\mathbb{P}\left(Z \leq z_{\alpha / 2}\right)=\alpha / 2
$$

Finally, notice that $z_{\alpha / 2}^{*}$ is always positive.

Common z critical values:

	$90 \% \mathrm{Cl}$	$95 \% \mathrm{Cl}$	$99 \% \mathrm{Cl}$
$z_{\alpha / 2}^{*}$	1.64	1.96	2.58

z Critical Values

Standard Normal Distribution

Large-Sample CI for Population Mean μ (Motivation)

Given any population with mean μ.
Let $\mathbf{X}:=\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from the population.
Then, construct the $100(1-\alpha) \% \mathrm{CI}$ for parameter μ :
(1) Produce a suitable pivot: Let $Q(\mathbf{X} ; \mu)=\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$
(2) Determine the pdf of the pivot: Provided $n>30$, then by the CLT,

$$
\bar{X} \stackrel{\text { approx }}{\sim} \operatorname{Normal}(\mu, \sigma / \sqrt{n}) \Longrightarrow Q(\mathbf{X} ; \mu) \stackrel{\text { approx }}{\sim} \operatorname{Normal}(0,1)
$$

(3) Find constants $a<b$ such that $\mathbb{P}(a<Q(\mathbf{X} ; \mu)<b)=1-\alpha$

Since the std normal pdf is symmetric, $a=-z_{\alpha / 2}^{*}$ and $b=z_{\alpha / 2}^{*}$
(9) Manipulate the inequalities to isolate parameter μ :

$$
-z_{\alpha / 2}^{*}<\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<z_{\alpha / 2}^{*} \quad \Longrightarrow \quad \bar{X}-z_{\alpha / 2}^{*} \cdot \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}+z_{\alpha / 2}^{*} \cdot \frac{\sigma}{\sqrt{n}}
$$

(5) Let $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right)$ be a sample taken from the population.
(0) Replace estimator \bar{X} \& parameter σ with $\bar{x} \& s$ computed from sample:

$$
\bar{x}-z_{\alpha / 2}^{*} \cdot \frac{s}{\sqrt{n}}<\mu<\bar{x}+z_{\alpha / 2}^{*} \cdot \frac{s}{\sqrt{n}}
$$

Since s estimates σ, further restrict condition on sample size n : $\quad n>40$

Large-Sample CI for Population Mean μ

Proposition

Given any population with mean μ.
Let x_{1}, \ldots, x_{n} be a large sample $(n>40)$ taken from the population.
Then the $100(1-\alpha) \%$ large-sample CI for μ is approximately

$$
\left(\bar{x}-z_{\alpha / 2}^{*} \cdot \frac{s}{\sqrt{n}}, \bar{x}+z_{\alpha / 2}^{*} \cdot \frac{s}{\sqrt{n}}\right)
$$

- OR WRITTEN MORE COMPACTLY

$$
\bar{x} \pm z_{\alpha / 2}^{*} \cdot \frac{s}{\sqrt{n}}
$$

If a half-width of w is desired for the $100(1-\alpha) \%$ Cl yielding $(\bar{x}-w, \bar{x}+w)$, then the minimum sample size required to achieve this is:
$n=\left\lceil\left(\frac{z_{\alpha / 2}^{*} \cdot s}{w}\right)^{2}\right\rceil$,
where s is the "best guess" for the sample std deviation.

Wald CI for Population Proportion p (Motivation)

Given any population with proportion p of some "success."
Let $\mathbf{X}:=\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from the population.
Let $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right)$ be a "small" sample less than 10% of population.
Then, construct the $100(1-\alpha) \%$ Wald CI for parameter p :
(1) Produce a pivot: $Q(\mathbf{X} ; p):=\frac{\widehat{p}-\mu_{\widehat{p}}}{\widehat{\sigma}_{\widehat{p}}}=\frac{\widehat{p}-p}{\sqrt{\widehat{p} \widehat{q} / n}} \quad(X \sim \operatorname{Binomial}(n, \widehat{p}))$
(2) Determine pdf of pivot: Provided $\min \{n \widehat{p}, n \widehat{q}\} \geq 10$, then by the CLT,

$$
X \stackrel{\text { approx }}{\sim} \operatorname{Normal}(h \widehat{p}, n \widehat{p} \widehat{q}) \Longrightarrow Q(\mathbf{X} ; p) \stackrel{\text { approx }}{\sim} \operatorname{Normal}(0,1)
$$

(3) Find constants $a<b$ such that $\mathbb{P}(a<Q(\mathbf{X} ; p)<b)=1-\alpha$

Since the std normal pdf is symmetric, $a=-z_{\alpha / 2}^{*}$ and $b=z_{\alpha / 2}^{*}$
(9) Manipulate the inequalities to isolate parameter p :

$$
-z_{\alpha / 2}^{*}<\frac{\widehat{p}-p}{\sqrt{\widehat{p} \widehat{q} / n}}<z_{\alpha / 2}^{*} \quad \Longrightarrow \hat{p}-z_{\alpha / 2}^{*} \cdot \sqrt{\widehat{p} \hat{q} / n}<p<\widehat{p}+z_{\alpha / 2}^{*} \cdot \sqrt{\widehat{p} \widehat{q} / n}
$$

Wald CI for Population Proportion p

Proposition

Given any population with proportion p of some "success."
Let x_{1}, \ldots, x_{n} be a sample taken from the population s.t. $\min \{n \widehat{p}, n \widehat{q}\} \geq 10$.
Then the $100(1-\alpha) \%$ Wald CI for p is approximately

$$
\left(\widehat{p}-z_{\alpha / 2}^{*} \cdot \sqrt{\widehat{p} \widehat{q} / n}, \widehat{p}+z_{\alpha / 2}^{*} \cdot \sqrt{\widehat{p} \widehat{q} / n}\right)
$$

- OR WRITTEN MORE COMPACTLY

$$
\widehat{p} \pm z_{\alpha / 2}^{*} \cdot \sqrt{\widehat{p} \widehat{q} / n}
$$

where $\hat{p}:=\frac{X}{n} \equiv \frac{\text { \# Successes in Sample }}{\text { Sample Size }} \quad$ and $\quad \widehat{q}:=1-\widehat{p}$
Unfortunately, Wald Cl's turn out to be very unreliable unless p is close to 0.5 . See page 290 in the textbook for the details why.

Fortunately, a more reliable Cl for p is available: Wilson Score CI

Wilson Score CI for Population Proportion p

To construct the Wilson Score CI , form the pivot using the std error of $\widehat{p}, \sigma_{\widehat{p}}$, rather than the estimated standard error p, $\widehat{\sigma}_{\hat{p}}$:

Proposition

Given any population with proportion p of some "success." Let x_{1}, \ldots, x_{n} be a sample (of any size) taken from the population. Then the $100(1-\alpha) \%$ Wilson score $\mathbf{C l}$ for p is approximately

$$
\frac{n \widehat{p}+0.5\left(z_{\alpha / 2}^{*}\right)^{2}}{n+\left(z_{\alpha / 2}^{*}\right)^{2}} \pm z_{\alpha / 2}^{*} \cdot \frac{\sqrt{n \widehat{p} \widehat{q}+0.25\left(z_{\alpha / 2}^{*}\right)^{2}}}{n+\left(z_{\alpha / 2}^{*}\right)^{2}}
$$

where $\hat{p}:=\frac{X}{n} \equiv \frac{\text { \# Successes in Sample }}{\text { Sample Size }} \quad$ and $\quad \widehat{q}:=1-\widehat{p}$

Textbook Logistics for Section 7.2

- Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Probability of Event	$P(A)$	$\mathbb{P}(A)$
Estimated Std Error of $\widehat{\theta}$	$s_{\widehat{\theta}}$	$\widehat{\sigma}_{\widehat{\theta}}$
z Critical Value	$z_{\alpha / 2}$	$z_{\alpha / 2}^{*}$

- Ignore "One-Sided Confidence Intervals" (pg 292)
- One-sided Cl's are only occasionally encountered in applications.
- One-Sided Confidence Intervals will not be considered in this course.
- Going forward, mentioning a CI implicitly means a two-sided CI.

Fin.

