# Small-Sample CI's for Normal Pop. Mean

Engineering Statistics Section 7.3

Josh Engwer

TTU

04 April 2016

### PART I

PART I:

GOSSET'S t DISTRIBUTION

# William Sealy Gosset (1876-1937)



Gosset's employer made him publish under the pseudonym "Student".

# Gosset's t Distribution (AKA Student's t Distribution)

#### Definition

| Notation     | $T\sim t_ u$                                                                                                                      |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter(s) | $\nu \equiv \text{\# Degrees of Freedom } (\nu = 1, 2, 3, 4, \cdots)$                                                             |  |  |
| Support      | $Supp(T) = (-\infty, \infty)$                                                                                                     |  |  |
| pdf          | $f_T(t; u) := rac{\Gamma(( u+1)/2)}{\sqrt{\pi  u} \cdot \Gamma( u/2)} \cdot rac{1}{[1+(t^2/ u)]^{( u+1)/2}}$                    |  |  |
| cdf          | $\Phi_t(t; u) = rac{\Gamma(( u+1)/2)}{\sqrt{\pi u}\cdot\Gamma( u/2)} \int_{-\infty}^t rac{1}{[1+(	au^2/ u)]^{( u+1)/2}} \ d	au$ |  |  |
| Mean         | $\mathbb{E}[T] = +\infty,  for  \nu = 1$                                                                                          |  |  |
|              | $\mathbb{E}[T] = 0 \;\; , \; for \;  u > 1$                                                                                       |  |  |
| Variance     | $\mathbb{V}[T] = +\infty$ , for $ u = 1,2$                                                                                        |  |  |
|              | $\mathbb{V}[T] = \nu/(\nu-2),  for  \nu > 2$                                                                                      |  |  |
| Model(s)     | el(s) (Used exclusively for Statistical Inference)                                                                                |  |  |

 $\nu$  is the lowercase Greek letter "nu"

 $\tau$  is the lowercase Greek letter "tau"

# Gosset's *t* Distribution (AKA Student's *t* Distribution)

#### Proposition

Properties of the  $t_{\nu}$  distribution:

- $t_{\nu}$  is symmetric, bell-shaped and centered at zero.
- ullet  $t_{
  u}$  is more spread out than the standard normal curve.
- The spread of the  $t_{\nu}$  curve decreases as  $\nu$  increases.
- As  $\nu \to \infty$ , the  $t_{\nu}$  curves approaches the standard normal curve.



The black curve is the **Standard Normal curve**.

## Plots of *t* Distributions (A Closer Look)



The black curve is the Standard Normal curve.

#### t Critical Values

A key component to some Cl's is the *t* critical value:

#### **Definition**

 $t_{\nu,\alpha/2}^*$  is called a t **critical value** of the t distribution with  $\nu$  df's such that its upper-tail probability is exactly its subscript value  $\alpha/2$ : (Here,  $T \sim t_{\nu}$ )

$$\mathbb{P}(T > t_{\nu,\alpha/2}^*) = \alpha/2$$

<u>IMPORTANT:</u> Do <u>not</u> confuse t critical value  $t_{\nu,\alpha/2}^*$  with the t percentile  $t_{\nu,\alpha/2}$ :

$$\mathbb{P}(T \le t_{\nu,\alpha/2}) = \alpha/2$$

Finally, notice that  $t_{\nu,\alpha/2}^*$  is always **positive**.

### t Critical Values



### t Critical Value Table

|       | 90% CI              | 95% CI               | 99% CI               |
|-------|---------------------|----------------------|----------------------|
| $\nu$ | $(\alpha/2 = 0.05)$ | $(\alpha/2 = 0.025)$ | $(\alpha/2 = 0.005)$ |
| 1     | 6.314               | 12.706               | 63.657               |
| 2     | 2.920               | 4.303                | 9.925                |
| 3     | 2.353               | 3.182                | 5.841                |
| 4     | 2.132               | 2.776                | 4.604                |
| 5     | 2.015               | 2.571                | 4.032                |
| 6     | 1.943               | 2.447                | 3.707                |
| 7     | 1.895               | 2.365                | 3.499                |
| 8     | 1.860               | 2.306                | 3.355                |
| 9     | 1.833               | 2.262                | 3.250                |
| 10    | 1.812               | 2.228                | 3.169                |
| 11    | 1.796               | 2.201                | 3.106                |
| 12    | 1.782               | 2.179                | 3.055                |
| 13    | 1.771               | 2.160                | 3.012                |
| 14    | 1.761               | 2.145                | 2.977                |
| 15    | 1.753               | 2.131                | 2.947                |
| 16    | 1.746               | 2.120                | 2.921                |

#### PART II

PART II:

SMALL-SAMPLE CI'S FOR NORMAL POPULATION MEAN  $\mu$ 

### A Statistic related to the t Distribution

#### Theorem

Let  $X_1, \ldots, X_n$  be a random sample from a <u>Normal</u> $(\mu, \sigma^2)$  population. Then:

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

PROOF: (It's complicated...)

# Small-Sample CI for Normal Pop. Mean $\mu$ (Motivation)

Given a <u>normal</u> population with unknown mean  $\mu$  and std dev  $\sigma$ . Let  $\mathbf{X} := (X_1, \dots, X_n)$  be a random sample from the population.

Then, construct the  $100(1-\alpha)\%$  CI for parameter  $\mu$ :

- Produce a suitable **pivot**: Let  $Q(\mathbf{X}; \mu) = \frac{\overline{X} \mu}{S/\sqrt{n}}$
- **3** Then the pivot is a t distribution with  $\nu = (n-1)$  df's:  $Q(\mathbf{X}; \mu) \sim t_{n-1}$
- **3** Find constants a < b such that  $\mathbb{P}(a < Q(\mathbf{X}; \mu) < b) = 1 \alpha$ Since the  $t_{n-1}$  pdf is symmetric,  $a = -t_{n-1,\alpha/2}^*$  and  $b = t_{n-1,\alpha/2}^*$
- **1** Manipulate the inequalities to isolate parameter  $\mu$ :

$$-t_{n-1,\alpha/2}^* < \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{n-1,\alpha/2}^* \implies \overline{X} - t_{n-1,\alpha/2}^* \cdot \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{n-1,\alpha/2}^* \cdot \frac{S}{\sqrt{n}}$$

- **5** Take a size n sample  $\mathbf{x} := (x_1, \dots, x_n)$  from the population.
- **1** Replace point estimators  $\overline{X}$  & S with  $\overline{x}$  & S computed from sample:

$$\overline{x} - t_{n-1,\alpha/2}^* \cdot \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{n-1,\alpha/2}^* \cdot \frac{s}{\sqrt{n}}$$

## Small-Sample CI for Normal Population Mean $\mu$

#### Proposition

Given a <u>normal</u> population with unknown mean  $\mu$  and std dev  $\sigma$ . Let  $x_1, \ldots, x_n$  be a small sample taken from the population.

Then the  $100(1-\alpha)\%$  small-sample CI for  $\mu$  is

$$\left(\overline{x} - t_{n-1,\alpha/2}^* \cdot \frac{s}{\sqrt{n}}, \ \overline{x} + t_{n-1,\alpha/2}^* \cdot \frac{s}{\sqrt{n}}\right)$$

— OR WRITTEN MORE COMPACTLY —

$$\bar{x} \pm t_{n-1,\alpha/2}^* \cdot \frac{s}{\sqrt{n}}$$

## Textbook Logistics for Section 7.3

Difference(s) in Notation:

| CONCEPT              | TEXTBOOK<br>NOTATION | SLIDES/OUTLINE<br>NOTATION |
|----------------------|----------------------|----------------------------|
| Probability of Event | P(A)                 | $\mathbb{P}(A)$            |
| z Critical Value     | $z_{lpha/2}$         | $z_{\alpha/2}^*$           |
| t Critical Value     | $t_{lpha/2, u}$      | $t_{ u,lpha/2}^*$          |

- Ignore any mention of one-sided Cl's
- Ignore "A Prediction Interval for a Single Future Value" (pg 299-301)
  - Prediction Intervals (PI's) are useful in some applications.
  - Since there's enough work to be done with CI's, PI's will not be covered.
- Ignore "Tolerance Intervals" section (pg 300-301)
- Ignore "Intervals Based on Nonnormal Population Distributions" (pg 302)
  - Bootstrap Cl's are very effective for nonnormal populations.

## Fin

Fin.