Large-Sample *z*-Tests about Pop. Mean Engineering Statistics Section 8.2

Josh Engwer

TTU

11 April 2016

PART I:

STANDARD NORMAL CDF TABLE (REVIEW)

Computing Standard Normal cdf $\Phi(z)$ via Table

The standard normal table below approximates $\Phi(z) = \mathbb{P}(Z \le z)$:

z	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53980	0.54380	0.54776	0.55172	0.55567	0.55966	0.56360	0.56749	0.57142	0.57535
0.2	0.57930	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91308	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900

Computing $\Phi(z)$ via Table or Calculator or Software

Josh Engwer (TTU)

Computing $\Phi(z)$ via Table or Calculator or Software

Josh Engwer (TTU)

PART II:

LARGE-SAMPLE HYPOTHESIS TEST FOR ANY POPULATION MEAN $\,\mu$

Hypothesis Tests (Procedure)

Proposition

<u>GIVEN</u>: Random sample $\mathbf{X} := (X_1, \dots, X_n)$ of a population with parameter θ . <u>TASK</u>: Perform a hypothesis test involving parameter θ .

- (1) State the null hypothesis H_0 and alternative hypothesis H_A .
 - $\begin{array}{cccc} H_0: & \theta = \theta_0 \\ H_A: & \theta > \theta_0 \end{array} \qquad \textit{OR} \qquad \begin{array}{cccc} H_0: & \theta = \theta_0 \\ H_A: & \theta < \theta_0 \end{array} \qquad \textit{OR} \qquad \begin{array}{cccc} H_0: & \theta = \theta_0 \\ H_A: & \theta \neq \theta_0 \end{array} \end{array}$
- (2) Select significance level α : $\alpha = 0.05$ OR $\alpha = 0.01$ OR $\alpha = 0.001$ (2) Identify the test statistic W(X, 0)
- (3) Identify the test statistic $W(\mathbf{X}; \theta_0)$
- (4) Formulate a decision rule involving P-value & significance level α

If *P*-value $\leq \alpha$ then reject H_0 in favor of H_A If *P*-value $> \alpha$ then accept H_0 (i.e. fail to reject H_0)

- (5) Obtain a sample $\mathbf{x} := (x_1, \dots, x_n)$ from the population
- (6) Compute the test statistic value for the sample $W(\mathbf{x}; \theta_0)$
- (7) Compute the corresponding P-value
- (8) Use the decision rule to arrive at decision to either reject H_0 or accept H_0

Large-Sample *z*-Test for Pop. Mean (Test Statistic)

Proposition

Given any population with mean μ .

Let $\mathbf{X} := (X_1, X_2, \dots, X_n)$ be a random sample from the population. Moreover, let the sample size be "large" meaning n > 40.

Suppose an α -level hypothesis test for μ is desired with one of the forms:

 $\begin{array}{cccc} H_0: & \mu = \mu_0 \\ H_A: & \mu > \mu_0 \end{array} \qquad OR \qquad \begin{array}{cccc} H_0: & \mu = \mu_0 \\ H_A: & \mu < \mu_0 \end{array} \qquad OR \qquad \begin{array}{cccc} H_0: & \mu = \mu_0 \\ H_A: & \mu \neq \mu_0 \end{array}$

Then, the corresponding test statistic $W(\mathbf{X}; \mu_0)$ is

$$Z = rac{\overline{X} - \mu_0}{S/\sqrt{n}} \implies Z \sim Standard Normal$$

<u>PROOF</u>: Formally, beyond scope of course. (n > 40 is needed due to CLT) Informally, take the corresponding pivot $Q(\mathbf{X}; \mu) := \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ and replace σ with its point estimator *S* and replace μ with its null hypothesis value μ_0

Josh Engwer (TTU)

Large-Sample *z*-Tests about Pop. Mean

Large-Sample *z*-Test for Population Mean (P-values)

Large-Sample *z*-Test for Population Mean (P-values)

Large-Sample *z*-Test for Population Mean (P-values)

Large-Sample *z*-Test for Population Mean (σ unknown)

Proposition

Population:	Any Population with std dev σ unknown		
Random Sample:	$\mathbf{X} := (X_1, X_2, \dots, X_n) \qquad (n > 40)$		
Realized Sample:	$\mathbf{x} := (x_1, x_2, \dots, x_n) \qquad (n > 40)$		
Approx. Test Statistic $W(\mathbf{X}; \mu_0)$ Test Statistic Value $W(\mathbf{x}; \mu_0)$	$Z=rac{\overline{X}-\mu_0}{S/\sqrt{n}} \qquad \qquad z=rac{\overline{x}-\mu_0}{s/\sqrt{n}}$		

HYPOTHESIS TEST:	P-VALUE DETERMINATION:		
$H_0:\ \mu=\mu_0$ vs. $H_A:\ \mu>\mu_0$	P-value $\approx \mathbb{P}(Z \ge z) = 1 - \Phi(z)$		
$H_0:\ \mu=\mu_0$ vs. $H_A:\ \mu<\mu_0$	<i>P-value</i> $\approx \mathbb{P}(Z \leq z) = \Phi(z)$		
$H_0:\ \mu=\mu_0$ vs. $H_A:\ \mu eq\mu_0$	<i>P-value</i> $\approx \mathbb{P}(Z \ge z) = 2 \cdot [1 - \Phi(z)]$		

Decision Bula:	If P-value $\leq \alpha$	then reject H_0 in favor of H_A		
Decision nule.	If P-value $> \alpha$	then accept H_0 (i.e. fail to reject H_0)		

• Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION		
Probability of Event	P(A)	$\mathbb{P}(A)$		
Alternative Hypothesis	H_a	H_A		

- Skip the "Normal Population Dist. with Known σ " section (pg 327-330)
 - In practice, population std deviation σ will <u>not</u> be known a priori.
- Skip the " β and Sample Size Determination" section (pg 330-331)
 - This will be briefly discussed in section 8.5

Fin.