Large-Sample *z*-Tests about Pop. Proportion

Engineering Statistics Section 8.4

Josh Engwer

TTU

15 April 2016

Hypothesis Tests (Procedure)

Proposition

<u>GIVEN</u>: Random sample $\mathbf{X} := (X_1, \dots, X_n)$ of a population with parameter θ . TASK: Perform a hypothesis test involving parameter θ .

- (1) State the null hypothesis H_0 and alternative hypothesis H_A .
 - $\begin{array}{cccc} H_0: & \theta = \theta_0 \\ H_A: & \theta > \theta_0 \end{array} \qquad \textit{OR} \qquad \begin{array}{cccc} H_0: & \theta = \theta_0 \\ H_A: & \theta < \theta_0 \end{array} \qquad \textit{OR} \qquad \begin{array}{cccc} H_0: & \theta = \theta_0 \\ H_A: & \theta \neq \theta_0 \end{array} \end{array}$
- (2) Select significance level α : $\alpha = 0.05$ OR $\alpha = 0.01$ OR $\alpha = 0.001$ (2) Identify the test statistic W(X, 0)
- (3) Identify the test statistic $W(\mathbf{X}; \theta_0)$
- (4) Formulate a decision rule involving P-value & significance level α

If *P*-value $\leq \alpha$ then reject H_0 in favor of H_A If *P*-value $> \alpha$ then accept H_0 (i.e. fail to reject H_0)

- (5) Obtain a sample $\mathbf{x} := (x_1, \dots, x_n)$ from the population
- (6) Compute the test statistic value for the sample $W(\mathbf{x}; \theta_0)$
- (7) Compute the corresponding P-value
- (8) Use the decision rule to arrive at decision to either reject H_0 or accept H_0

Josh Engwer (TTU)

Proposition

Given any population with proportion p of "successes". (q := 1 - p)Let $\mathbf{X} := (X_1, X_2, \dots, X_n)$ be a random sample from the population. Moreover, let sample size n be chosen such that $\min\{np, nq\} \ge 10$ Suppose an α -level hypothesis test for p is desired with one of the forms:

 $\begin{array}{cccc} H_{0}: & p = p_{0} \\ H_{A}: & p > p_{0} \end{array} \qquad OR \qquad \begin{array}{cccc} H_{0}: & p = p_{0} \\ H_{A}: & p < p_{0} \end{array} \qquad OR \qquad \begin{array}{cccc} H_{0}: & p = p_{0} \\ H_{A}: & p \neq p_{0} \end{array}$

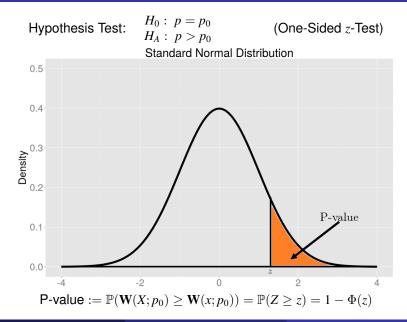
Then, the corresponding test statistic $W(\mathbf{X}; p_0)$ is

 $Z = \frac{(X/n) - p_0}{\sqrt{p_0 q_0/n}} \quad \text{where} \quad \begin{array}{c} X & \equiv & \text{\# "Successes"} \\ q_0 & := & 1 - p_0 \end{array} \implies Z \sim \textit{Std Normal}$

PROOF: Formally, beyond scope of course.

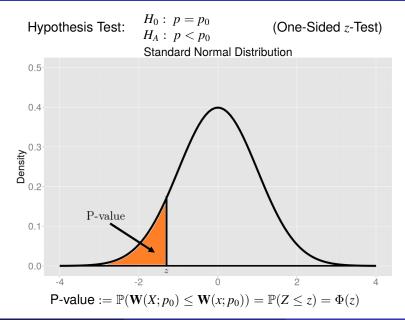
Informally, take the corresponding pivot $Q(\mathbf{X};p) := \frac{(X/n) - p}{\sqrt{pq/n}}$ and replace p with its null hypothesis value p_0 (and q with q_0)

Large-Sample *z*-Test for Pop. Proportion (P-values)

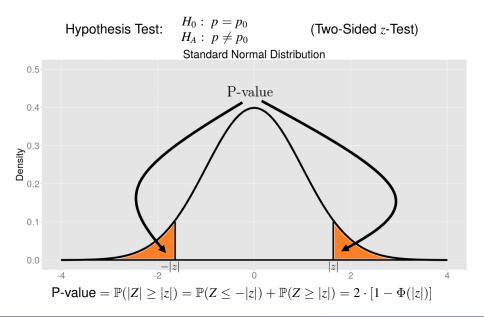


Josh Engwer (TTU)

Large-Sample *z*-Test for Pop. Proportion (P-values)



Large-Sample *z*-Test for Pop. Proportion (P-values)



Large-Sample *z*-Test for Population Proportion

Proposition

Population:	Unknown proportion p of "successes"	
Random Sample:	$\mathbf{X} := (X_1, X_2, \dots, X_n)$	
Realized Sample:	$\mathbf{x} := (x_1, x_2, \ldots, x_n)$	
Test Statistic $W(\mathbf{X}; p_0)$	$\overline{z} = (X/n) - p_0$ $\overline{z} = \widehat{p} - p_0$	
Test Statistic Value $W(\mathbf{x}; p_0)$	$\Sigma = rac{1}{\sqrt{p_0 q_0/n}}$ $\qquad \qquad \Sigma = rac{1}{\sqrt{p_0 q_0/n}}$	
	$\widehat{p} := x/n, \ q_0 := 1 - p_0, \ \min\{np_0, nq_0\} \ge 10$	
	$x \equiv #$ "Successes" in realized sample x	

HYPOTHESIS	TEST: P-V	ALUE DETERMINATION:
$H_0: p = p_0$ VS. H_A	$: p > p_0 \mid P$ -v	value $= \mathbb{P}(Z \ge z) = 1 - \Phi(z)$
$H_0: p=p_0$ VS. H_A	$: p < p_0 P-v$	value $= \mathbb{P}(Z \le z) = \Phi(z)$
$H_0: p=p_0$ vs. H_A	$: p \neq p_0 \mid P$ -v	value $= \mathbb{P}(Z \ge z) = 2 \cdot [1 - \Phi(z)]$
<i>If</i>	P-value $< \alpha$	then reject H_0 in favor of H_A
Decision Rulle:	P-value $> \alpha$	then accept H_0 (i.e. fail to reject H_0)

• Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Probability of Event	P(A)	$\mathbb{P}(A)$
Alternative Hypothesis	H_a	H _A

• Skip the " β and Sample Size Determination" section (pg 348-349)

- This will be briefly discussed in section 8.5
- Skip the "Small-Sample Tests" section (pg 349-350)
 - Instead of the test statistic, X/n, being distributed as a Std Normal, use test statistic, X = (# "Successes"), which is distributed as a Binomial.

Fin.