Large-Sample Tests/Cl's for $\mu_1 - \mu_2$ Engineering Statistics Section 9.1

Josh Engwer

TTU

25 April 2016

Proposition

Given any two <u>normal</u> populations with means μ_1,μ_2 and std dev's σ_1,σ_2 . Let $\mathbf{X} := (X_1, X_2, \dots, X_{n_1})$ be a random sample from the 1st population. Let $\mathbf{Y} := (Y_1, Y_2, \dots, Y_{n_2})$ be a random sample from the 2nd population. Moreover, let random samples $\mathbf{X} \& \mathbf{Y}$ be independent of one another. Then:

- $\overline{X} \overline{Y}$ is a unbiased estimator of $\mu_1 \mu_2$.
- The standard error of $\overline{X} \overline{Y}$ is $\sigma_{\overline{X} \overline{Y}} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
- The estimated standard error of $\overline{X} \overline{Y}$ is $\widehat{\sigma}_{\overline{X}-\overline{Y}} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ where s_1^2, s_2^2 are the corresponding sample variances.

PROOF: This was shown in the 6.1 Outline problem EX 6.1.2

Large-Sample *z*-Test for $\mu_1 - \mu_2$ (Test Statistic)

Proposition

Given any two populations with means μ_1 and μ_2 . Let $\mathbf{X} := (X_1, X_2, \dots, X_{n_1})$ be a random sample from the 1st population. Let $\mathbf{Y} := (Y_1, Y_2, \dots, Y_{n_2})$ be a random sample from the 2nd population. Moreover, let random samples $\mathbf{X} \& \mathbf{Y}$ be independent of one another. Moreover, let the sample sizes be "large" meaning $n_1, n_2 > 40$.

Suppose an α -level hypothesis test for $\mu_1 - \mu_2$ is desired with one of the forms:

$$\begin{array}{cccc} H_{0}: & \mu_{1} - \mu_{2} = \delta_{0} \\ H_{A}: & \mu_{1} - \mu_{2} > \delta_{0} \end{array} \quad OR \quad \begin{array}{cccc} H_{0}: & \mu_{1} - \mu_{2} = \delta_{0} \\ H_{A}: & \mu_{1} - \mu_{2} < \delta_{0} \end{array} \quad OR \quad \begin{array}{cccc} H_{0}: & \mu_{1} - \mu_{2} = \delta_{0} \\ H_{A}: & \mu_{1} - \mu_{2} \neq \delta_{0} \end{array}$$

Then, the corresponding test statistic $W(\mathbf{X}, \mathbf{Y}; \delta_0)$ is

$$Z = \frac{(\overline{X} - \overline{Y}) - \delta_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \implies Z \stackrel{approx}{\sim} Standard Normal$$

PROOF: (Beyond the scope of this course.)

Josh Engwer (TTU)

Large-Sample *z*-Test for $\mu_1 - \mu_2$ (σ_1, σ_2 unknown)

Proposition

Populations:	Any Two Populations with σ_1, σ_2 unknown			
Realized Samples:	$\mathbf{x} := (x_1, x_2, \dots, x_{n_1}) \qquad (n_1 > 40)$			
	$\mathbf{y} := (y_1, y_2, \dots$ Samples $\mathbf{x} \& \mathbf{y}$ are	$\mathbf{y} := (y_1, y_2, \dots, y_{n_2})$ $(n_2 > 40)$ Samples $\mathbf{x} \& \mathbf{y}$ are independent of one another		
Test Statistic Value $W(\mathbf{x},\mathbf{y};\delta_0)$	$z = \frac{(\bar{x} - \bar{y}) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$			
HYPOTHESIS TEST:		P-VALUE DETERMINATION		

$H_0: \ \mu_1 - \mu_2 = \delta_0$	VS.	$H_A: \ \mu_1 - \mu_2 > \delta_0$	<i>P-value</i> $\approx 1 - \Phi(z)$
$H_0: \ \mu_1 - \mu_2 = \delta_0$	VS.	$H_A: \ \mu_1 - \mu_2 < \delta_0$	<i>P-value</i> $\approx \Phi(z)$
$H_0: \ \mu_1 - \mu_2 = \delta_0$	VS.	$H_A: \ \mu_1 - \mu_2 \neq \delta_0$	<i>P-value</i> $\approx 2 \cdot [1 - \Phi(z)]$

Decision Rule: If P-value $\leq \alpha$ then reject H_0 in favor of H_A If P-value $> \alpha$ then accept H_0 (i.e. fail to reject H_0)

Large-Sample *z*-Cl for $\mu_1 - \mu_2$ (σ_1, σ_2 unknown)

Proposition

Given any two populations with means μ_1 and μ_2 . Let $x_1, \overline{x_2, \ldots, x_{n_1}}$ be a large sample $(n_1 > 40)$ taken from the 1st population. Let $y_1, y_2, \ldots, y_{n_2}$ be a large sample $(n_2 > 40)$ taken from the 2nd population. Then the $100(1 - \alpha)\%$ **large-sample Cl for** $\mu_1 - \mu_2$ is approximately

$$\begin{pmatrix} (\bar{x} - \bar{y}) - z_{\alpha/2}^* \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, & (\bar{x} - \bar{y}) + z_{\alpha/2}^* \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ \hline & OR WRITTEN MORE COMPACTLY \\ & (\bar{x} - \bar{y}) \pm z_{\alpha/2}^* \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ \end{cases}$$

If a half-width of *w* is desired for the $100(1 - \alpha)\%$ CI yielding $(\bar{x} - \bar{y}) \pm w$, then the minimum sample size *n* required to achieve this is:

$$n = \begin{bmatrix} \frac{4(z_{\alpha/2}^*)^2(s_1^2 + s_2^2)}{w^2} \end{bmatrix}, \quad \text{where } s_1, s_2 \text{ are "best guesses" for the population std dev's } \sigma_1, \sigma_2$$

Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Probability of Event	P(A)	$\mathbb{P}(A)$
Alternative Hypothesis	H_a	H_A
Sample Sizes	m, n	n_1, n_2
Hypothesized Mean Difference	Δ_0	δ_0

• Skip "Test Procedures for Pop's with Known Variances" (pg 363-365)

• In practice, population std dev's σ_1, σ_2 will <u>not</u> be known a priori.

- Ignore the " β and the Choice of Sample Size" section (pg 366-367)
- Ignore any mention of **one-sided Cl's**.

Fin.