Small-Sample Tests/CI's for $\mu_1 - \mu_2$ Engineering Statistics Section 9.2

Josh Engwer

TTU

27 April 2016

Small-Sample *t*-Test for $\mu_1 - \mu_2$ (Test Statistic)

Proposition

Given any two <u>normal</u> populations with means μ_1 and μ_2 . Let $\mathbf{X} := (X_1, X_2, \dots, X_{n_1})$ be a random sample from the 1st population. Let $\mathbf{Y} := (Y_1, Y_2, \dots, Y_{n_2})$ be a random sample from the 2nd population. Moreover, let random samples $\mathbf{X} \& \mathbf{Y}$ be independent of one another.

Suppose an α -level hypothesis test for $\mu_1 - \mu_2$ is desired with one of the forms:

$$\begin{array}{cccc} H_{0}: & \mu_{1} - \mu_{2} = \delta_{0} \\ H_{A}: & \mu_{1} - \mu_{2} > \delta_{0} \end{array} \quad OR \quad \begin{array}{cccc} H_{0}: & \mu_{1} - \mu_{2} = \delta_{0} \\ H_{A}: & \mu_{1} - \mu_{2} < \delta_{0} \end{array} \quad OR \quad \begin{array}{cccc} H_{0}: & \mu_{1} - \mu_{2} = \delta_{0} \\ H_{A}: & \mu_{1} - \mu_{2} \neq \delta_{0} \end{array}$$

Then, the corresponding test statistic $W(\mathbf{X}, \mathbf{Y}; \delta_0)$ is

$$Z = \frac{(\overline{X} - \overline{Y}) - \delta_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \implies Z \sim t_\nu \quad \text{where} \quad \nu = \left\lfloor \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}} \right\rfloor$$

PROOF: (Beyond the scope of this course.)

Josh Engwer (TTU)

Small-Sample Tests/CI's for $\mu_1 - \mu_2$

Small-Sample *t*-Test for $\mu_1 - \mu_2$ (σ_1, σ_2 unknown)

Proposition

Populations:	Two <u>Normal</u> Populations with σ_1, σ_2 unknown		
Realized Samples:	$\mathbf{x} := (x_1, x_2, \dots, x_{n_1})$ with mean \overline{x} and std dev s_1		
	$\mathbf{y} := (y_1, y_2, \ldots, y_{n_2})$	with mean \overline{y} and std dev s_2	
	Samples $\mathbf{x} \And \mathbf{y}$ are independent of one another		
Test Statistic Value $W(\mathbf{x},\mathbf{y};\delta_0)$	$t = \frac{(\overline{x} - \overline{y}) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$\nu^* = \left\lfloor \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}} \right\rfloor$	
HYPOTHESIS TEST:		P-VALUE DETERMINATION:	
$H_0: \ \mu_1 - \mu_2 = \delta_0 \ \ {\it VS}$	$H_A: \mu_1 - \mu_2 > \delta_0$	$\textbf{P-value} = 1 - \Phi_t(t; \nu^*)$	
$H_0:\ \mu_1-\mu_2=\delta_0$ vs	$H_A: \mu_1 - \mu_2 < \delta_0$	P -value = $\Phi_t(t; \nu^*)$	
$H_0: \ \mu_1 - \mu_2 = \delta_0 \ VS$	$H_A: \ \mu_1 - \mu_2 \neq \delta_0$	<i>P</i>-value = $2 \cdot [1 - \Phi_t(t ; \nu^*)]$	

Decision Rule:

If P-value $\leq \alpha$ If P-value $> \alpha$

then reject H_0 in favor of H_A then accept H_0 (i.e. fail to reject H_0)

Proposition

Given two <u>normal</u> populations with means μ_1 and μ_2 . Let $x_1, x_2, \ldots, x_{n_1}$ be a sample taken from the 1st population. Let $y_1, y_2, \ldots, y_{n_2}$ be a sample taken from the 2nd population. Then the $100(1 - \alpha)$ % **small-sample CI for** $\mu_1 - \mu_2$ is approximately

$$\begin{split} \left((\bar{x} - \bar{y}) - t_{\nu^*, \alpha/2}^* \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \quad (\bar{x} - \bar{y}) + t_{\nu^*, \alpha/2}^* \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \right) \\ & \longrightarrow OR \text{ WRITTEN MORE COMPACTLY } \\ & (\bar{x} - \bar{y}) \pm t_{\nu^*, \alpha/2}^* \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ & \text{ where } \\ & \nu^* = \left\lfloor \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}} \right\rfloor \end{split}$$

Textbook Logistics for Section 9.2

Difference(s) in Notation:

CONCERT	TEXTBOOK	SLIDES/OUTLINE
CONCEPT	NOTATION	NOTATION
Probability of Event	P(A)	$\mathbb{P}(A)$
Alternative Hypothesis	H_a	H_A
Sample Sizes	m, n	n_1, n_2
Hypothesized Mean Difference	Δ_0	δ_0

Ignore "Pooled t Procedures" section (pg 377-378)

- A **pooled** procedure assumes the pop. variances σ_1^2, σ_2^2 are **equal**.
- A pooled estimator of σ² is a weighted avg of sample variances S₁², S₂²:

$$S_p^2 := \frac{n_1 - 1}{n_1 + n_2 - 2} \cdot S_1^2 + \frac{n_2 - 1}{n_1 + n_2 - 2} \cdot S_2^2$$

- Pooled *t* tests are <u>not</u> robust to violations of equal variance assumption.
- In practice, population variances σ_1^2, σ_2^2 will <u>not</u> be equal.
- Ignore "Type II Error Probabilities" section (pg 378 379)
 - Turns out computing β or power of a 2-sample *t* test is complicated.
- Ignore any mention of **one-sided Cl's**.

Fin.