Large-Sample Tests/Cl's for $p_1 - p_2$ Engineering Statistics Section 9.4

Josh Engwer

TTU

29 April 2016

Proposition

Given any two populations with proportions p_1 , p_2 of some "success". Let $\mathbf{X} := (X_1, X_2, \ldots, X_{n_1})$ be a random sample from the 1st population. Let $\mathbf{Y} := (Y_1, Y_2, \ldots, Y_{n_2})$ be a random sample from the 2nd population. Moreover, let random samples $\mathbf{X} \& \mathbf{Y}$ be independent of one another. Then:

- $\hat{p}_1 \hat{p}_2$ is a unbiased estimator of $p_1 p_2$.
- The standard error of $\hat{p}_1 \hat{p}_2$ is $\sigma_{\hat{p}_1 \hat{p}_2} = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$
- The estimated standard error of $\overline{X} \overline{Y}$ is $\widehat{\sigma}_{\overline{X} \overline{Y}} = \sqrt{\frac{\widehat{p}_1 \widehat{q}_1}{n_1}} + \frac{\widehat{p}_2 \widehat{q}_2}{n_2}$ where $\begin{array}{c} q_1 := 1 - p_1 \\ q_2 := 1 - p_2 \end{array}$, $\begin{array}{c} \widehat{p}_1 := X/n_1 \\ \widehat{p}_2 := Y/n_2 \end{array}$, $\begin{array}{c} \widehat{q}_1 := 1 - \widehat{p}_1 \\ \widehat{q}_2 := 1 - \widehat{p}_2 \end{array}$

PROOF: This was shown in the 6.1 Homework Problem #3

Large-Sample *z*-Test for $p_1 - p_2$ (Test Statistic)

Proposition

Given any two populations with proportions p_1 and p_2 of some "success". Let $\mathbf{X} := (X_1, X_2, \dots, X_{n_1})$ be a random sample from the 1st population. Let $\mathbf{Y} := (Y_1, Y_2, \dots, Y_{n_2})$ be a random sample from the 2nd population. Moreover, let random samples $\mathbf{X} \& \mathbf{Y}$ be independent of one another.

Suppose an α -level hypothesis test for $p_1 - p_2$ is desired with one of the forms:

$$\begin{array}{cccc} H_0: & p_1 - p_2 = 0 \\ H_A: & p_1 - p_2 > 0 \end{array} \quad OR \quad \begin{array}{cccc} H_0: & p_1 - p_2 = 0 \\ H_A: & p_1 - p_2 < 0 \end{array} \quad OR \quad \begin{array}{cccc} H_0: & p_1 - p_2 = 0 \\ H_A: & p_1 - p_2 \neq 0 \end{array}$$

Then, the corresponding test statistic $W(\mathbf{X}, \mathbf{Y})$ is

$$Z = \frac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{pq\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \implies Z \stackrel{approx}{\sim} Standard Normal$$

where $\begin{array}{ll} \widehat{p}_1 := X/n_1 & \widehat{q}_1 := 1 - \widehat{p}_1 \\ \widehat{p}_2 := Y/n_2 & , & \widehat{q}_2 := 1 - \widehat{p}_2 \end{array}$, $\min\{n_1 \widehat{p}_1, n_1 \widehat{q}_1, n_2 \widehat{p}_2, n_2 \widehat{q}_2\} \ge 10$

Large-Sample *z*-Test for $p_1 - p_2$

Proposition

Populations:		Two Pop's with proportions p_1, p_2 of some "success"			
Realized Samples:		$\mathbf{x} := (x_1, x_2, \dots$	$, x_{n_1})$	$\mathbf{y}:=(y_1,y_2,\ldots,y_{n_2})$	
		Samples x & y are independent of one another			
Test Statistic Value $W(\mathbf{x}, \mathbf{y})$		$\hat{n}_1 - \hat{n}_2$		$\widehat{p}_1 := X/n_1, \ \widehat{p}_2 := Y/n_2$	
	2	$z = \frac{P_1 P_2}{\sqrt{1 + P_2}}$	where	$\widehat{p} := (X+Y)/(n_1+n_2)$	
$W(\mathbf{x},\mathbf{y})$		$\sqrt{\widehat{p}\widehat{q}}\left(\frac{1}{-}+\frac{1}{-}\right)$.)	$\widehat{q} := 1 - \widehat{p}$	
		$\bigvee^{r} (n_1 n_2$)		
		$\min\{n_1\widehat{p}_1, n_1\widehat{q}_1, n_2\widehat{p}_2, n_2\widehat{q}_2\} \ge 10$			
HYPOTHESIS TEST:			P-VALUE	DETERMINATION:	
$H_0: p_1 - p_2 = 0$ vs. $H_A: p_1 - p_2 > 0$			P-value a	$\approx 1 - \Phi(z)$	
$H_0: p_1 - p_2 = 0$ vs. $H_A: p_1 - p_2 < 0$			P-value 🕫	$\approx \Phi(z)$	
$H_0: p_1 - p_2 = 0$	VS.	$H_A: p_1-p_2\neq 0$	P-value 🕫	$pprox 2 \cdot [1 - \Phi(z)]$	
Decision Rule:	If P	-value $\leq \alpha$ the	en reject H ₀	in favor of H_A	
	If P	-value $> \alpha$ the	en accept H	I_0 (<i>i.e. fail to reject</i> H_0)	
Josh Engwer (TTU)		Large-Sample Tests/Cl's f	or $p_1 - p_2$	29 April 2016 4 / 7	

Proposition

Given any two populations with proportions p_1 and p_2 of some "success". Let $x_1, x_2, ..., x_{n_1}$ be a sample taken from the 1st population. Let $y_1, y_2, ..., y_{n_2}$ be a sample taken from the 2nd population.

Then the $100(1 - \alpha)\%$ large-sample Cl for $p_1 - p_2$ is approximately

$$\begin{split} \left((\hat{p}_1 - \hat{p}_2) - z_{\alpha/2}^* \cdot \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}, \quad (\hat{p}_1 - \hat{p}_2) + z_{\alpha/2}^* \cdot \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} \right) \\ & \longrightarrow OR \ WRITTEN \ MORE \ COMPACTLY \ -- \\ (\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2}^* \cdot \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} \\ where \ \ \hat{p}_1 := X/n_1, \quad \hat{q}_1 := 1 - \hat{p}_1 \\ \hat{p}_2 := Y/n_2, \quad \hat{q}_2 := 1 - \hat{p}_2 \ , \ \min\{n_1 \hat{p}_1, n_1 \hat{q}_1, n_2 \hat{p}_2, n_2 \hat{q}_2\} \ge 10 \end{split}$$

Difference(s) in Notation:

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Probability of Event	P(A)	$\mathbb{P}(A)$
Alternative Hypothesis	H_a	H_A
Sample Sizes	m, n	n_1, n_2

Ignore "Type II Error Probabilities and Sample Sizes" (pg 394-395)

- Ignore "Small-Sample Inferences" section (pg 397)
 - Turns out to be not very straightforward.
 - One can employ **Fisher's Exact Test** or **Barnard's Exact Test**, but they bring complications (and sometimes controversies!)
- Ignore any mention of **one-sided Cl's**.

Fin.