
EXPERIMENTAL DESIGN TERMINOLOGY [DEVORE 10.1]

DEFINITIONS & NOTATION:

The collection of I samples to determine cause & effect is an experiment.

A balanced experiment has equal-sized samples/groups.

Each data point of a sample is called an observation or measurement.

The dependent variable to be measured is called the response.

The manner of sample collection & grouping is called experimental design.

The main characteristic distinguishing all the samples is called the factor.

The factor’s particular values or settings are called its levels.

Each sample corresponding to a level is called a group.

FACTOR A: GROUP SIZE: GROUPS:

Level 1 J x1• : x11, x12, · · · , x1J
Level 2 J x2• : x21, x22, · · · , x2J

...
...

...

Level I J xI• : xI1, xI2, · · · , xIJ

FACTOR A:
GROUP

SIZE:

GROUP

MEAN:

GROUP

STD DEV:

Level 1 (x1•) J x1• s1

Level 2 (x2•) J x2• s2
...

...
...

...

Level I (xI•) J xI• sI

This section (§10.1) & §10.2 involve only balanced experiments.

This chapter’s last section (§10.3) considers unbalanced experiments.

EXAMPLES:

Suppose we wish to determine whether three light bulb brands all have similar lifetimes or not.

A sample of 5 bulbs from each brand has their lifetimes measured (in years) and recorded in the below table:

BULB BRAND:
SAMPLE

SIZE:
LIFETIMES (in yrs):

Brand 1 (x1•) 5 9.22, 9.07, 8.95, 8.98, 9.54

Brand 2 (x2•) 5 8.92, 8.88, 9.10, 8.71, 8.85

Brand 3 (x3•) 5 9.08, 8.99, 9.06, 8.93, 9.02

or expressed in terms of means and standard deviations:

BULB BRAND:
SAMPLE

SIZE:
MEAN LIFETIMES (in yrs): STD DEV:

Brand 1 (x1•) 5 x1• = 9.152 s1 ≈ 0.2410

Brand 2 (x2•) 5 x2• = 8.892 s2 ≈ 0.1406

Brand 3 (x3•) 5 x3• = 9.016 s3 ≈ 0.0594
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THE PROBLEM WITH MANY-SAMPLE t-TESTS [DEVORE 10.1]

Suppose a designed experiment calls to test four independent samples:

H0 : µ1 = µ2 = µ3 = µ4

HA : At least two of the µ’s differ

One way to do this is perform
(
4
2

)
independent t-tests, each at signif. level α:

H
(1)
0 : µ1 = µ2

H
(1)
A : µ1 6= µ2

H
(2)
0 : µ1 = µ3

H
(2)
A : µ1 6= µ3

H
(3)
0 : µ1 = µ4

H
(3)
A : µ1 6= µ4

H
(4)
0 : µ2 = µ3

H
(4)
A : µ2 6= µ3

H
(5)
0 : µ2 = µ4

H
(5)
A : µ2 6= µ4

H
(6)
0 : µ3 = µ4

H
(6)
A : µ3 6= µ4

Suppose a designed experiment calls to test four independent samples:

H0 : µ1 = µ2 = µ3 = µ4

HA : At least two of the µ’s differ

Alas, since each successive t-test is performed with the same dataset,

the experiment-wise significance level, αexp, grows with each t-test:

αexp := P(Committing a Type I Error in at least one t-test)

= 1− P(Never Committing a Type I Error in any of the t-tests)

= 1− P
(⋂6

i=1(Not Committing a Type I Error in ith t-test)
)

IND
= 1−

∏6
i=1 P(Not Committing a Type I Error in ith t-test)

α
= 1−

∏6
i=1(1− α)

= 1− (1− α)6
[
α := P

(
Rejecting H

(k)
0 | H(k)

0 is True
)]

Alas, with successive t-tests, αexp grows (AKA α-inflation):

Chosen α Resulting αexp = 1− (1− α)6

0.10 0.4686

0.05 0.2649

0.01 0.0585

0.001 0.0060

Required α = 1− (1− αexp)1/6 Desired αexp

0.0174 0.10

0.0085 0.05

0.0017 0.01

0.0002 0.001

A loose (rough) upper bound for αexp is α× (# t-tests): αexp ≤ αNt-tests

To prevent α-inflation, all means should be simultaneously tested.
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1-FACTOR FIXED EFFECTS LINEAR MODELS [DEVORE 10.1]

1-FACTOR FIXED EFFECTS LINEAR (STATISTICAL) MODEL (DEFINITION):

Given a 1-factor balanced experiment with I > 2 groups, each of size J .

Let Xij ≡ random variable for jth measurement in the ith group.

Then, the fixed effects linear (statistical) model for the experiment is defined as:

Xij = µ+ αAi + Eij where Eij
iid∼ Normal(0, σ2)

µ ≡ population grand mean of all I population means

αAi ≡ deviation of ith population mean µi from µ due to Factor A

Eij ≡ rv for error/noise applied to jth measurement in ith group

Fixed effects means all relevant levels of factor A are considered in model.

1-FACTOR LINEAR MODEL (MOTIVATING EXAMPLES):

Xij = µ

µ := 3.2

µ1 = 3.2, µ2 = 3.2, µ3 = 3.2

FACTOR A: MEASUREMENTS:

Level 1 (x1•) x11 = 3.2, x12 = 3.2, x13 = 3.2, x14 = 3.2

Level 2 (x2•) x21 = 3.2, x22 = 3.2, x23 = 3.2, x24 = 3.2

Level 3 (x3•) x31 = 3.2, x32 = 3.2, x33 = 3.2, x34 = 3.2

Xij = µ+ αAi

µ := 3.2

αA1 := −5.5, αA2 := −2.0, αA3 := 7.5

µ1 = −2.3, µ2 = 1.2, µ3 = 10.7

FACTOR A: MEASUREMENTS:

Level 1 (x1•) x11 = −2.3, x12 = −2.3, x13 = −2.3, x14 = −2.3

Level 2 (x2•) x21 = 1.2, x22 = 1.2, x23 = 1.2, x24 = 1.2

Level 3 (x3•) x31 = 10.7, x32 = 10.7, x33 = 10.7, x34 = 10.7

Xij = µ+ αAi + Eij

µ := 3.2, αA1 := −5.5, αA2 := −2.0, αA3 := 7.5, Eij
iid∼ Normal(0, σ2 := 3.24)

µ1 = −2.3, µ2 = 1.2, µ3 = 10.7

FACTOR A: MEASUREMENTS:

Level 1 (x1•) x11 = −1.23, x12 = −1.17, x13 = 0.05, x14 = −3.08

Level 2 (x2•) x21 = 0.54, x22 = 1.03, x23 = 0.62, x24 = 1.63

Level 3 (x3•) x31 = 13.64, x32 = 12.30, x33 = 11.74, x34 = 10.60
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1-FACTOR LINEAR MODELS (POINT ESTIMATORS) [DEVORE 10.1]

1-FACTOR LINEAR MODEL (LEAST-SQUARES ESTIMATORS – LSE’s):

Given a 1-factor linear model: Xij = µ+ αAi + Eij where Eij
iid∼ Normal(0, σ2) Then:

(a) The least-squares♠♣ estimators†‡ (LSE’s) for the model parameters are:

µ̂ = x••

α̂Ai = xi• − x••
where

x•• ≡ Grand sample mean

xi• ≡ Sample mean of ith group

(b) For these least-squares estimators, it’s required that
∑
i α̂

A
i = 0.

(c) These least-squares estimators are all unbiased.

†A. Dean, D. Voss, D. Draguljić, Design & Analysis of Experiments, 2nd Ed, Springer, 2017. (§3.4.3)

‡D.C. Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.3.3, §3.10.1)

♠A.M. Legendre, Nouvelles Méthodes pour la Détermination des Orbites des Comètes, 1806.

♣Gauss, Theoria Motus Corporum Coelestrium in Sectionibus Conicis Solem Ambientium, 1809.

1-FACTOR LINEAR MODEL (PREDICTED RESPONSES & RESIDUALS):

Given a 1-factor linear model:

Xij = µ+ αAi + Eij where Eij
iid∼ Normal(0, σ2)

Then the corresponding predicted responses, denoted x̂ij , are:

x̂ij := µ̂+ α̂Ai = x•• + (xi• − x••) = xi•

Moreover, the corresponding residuals, denoted xresij , are:

xresij := xij − x̂ij = xij − xi•

LINEAR MODELS (BEST LINEAR UNBIASED ESTIMATORS – BLUE’s):

A point estimator θ̂ is called a best linear unbiased estimator (BLUE) if:

• It estimates a parameter θ of a linear model.

• It is a linear combination of the data points: θ̂ :=
∑n
k=1 ckxk

• It is an unbiased estimator: E[θ̂] = θ

• It has minimum variance of all such unbiased estimators.

REMARK: BLUE’s are generally easier to construct & prove than UMVUE’s.

1-FACTOR LINEAR MODEL (GAUSS1-MARKOV2 THEOREM):

Given a 1-factor linear model: Xij = µ+ αAi + Eij

Moreover, suppose the following conditions are all satisfied:

E[Eij ] = 0 (errors are all centered at zero)

V[Eij ] = σ2 (errors all have the same finite variance)

C[Eij , Ei′j′ ] = 0 (errors are uncorrelated when i 6= i′ or j 6= j′)

Then, the least-squares estimators µ̂, α̂Ai are all BLUE’s.

1C.F. Gauss, “Theoria Combinationis Observationum Erroribus Minimis Obnoxiae”, (1823), 1-58.

2A.A. Markov, Calculus of Probabilities, 1st Edition, 1900.
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1-FACTOR ANOVA (MOTIVATION) [DEVORE 10.1]

High variance between groups

Low variance within groups

s2between/s
2
within � 1 ⇐⇒ Factor A clearly has a significant effect!!

Low variance between groups

High variance within groups

s2between/s
2
within � 1 ⇐⇒ Factor A clearly has no significant effect!

Low variance between groups

Low variance within groups

s2between/s
2
within ≈ 1 =⇒ Hard to tell if factor A has a significant effect...

High variance between groups

High variance within groups

s2between/s
2
within ≈ 1 =⇒ Hard to tell if factor A has a significant effect...
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1-FACTOR ANOVA♠♣ (MOTIVATION) [DEVORE 10.1]

• 1-FACTOR ANOVA BASIC MODEL ASSUMPTIONS:

In order for the forthcoming ANOVA test to bear good statistical properties and to utilize the Gauss-Markov

Theorem, certain assumptions regarding the samples & populations must be imposed (similarly to t-tests & F -tests):

– All measurements on units are independent.

– All groups are approximately normally distributed.

– All groups have approximately same variance.

• 1-FACTOR ANOVA TEST STATISTIC:

Given an experiment with one factor and I > 2 groups.

Moreover, suppose the 1-factor basic ANOVA assumptions are all satisfied.

Then, the F -test using the following test statistic value: f =
s2between
s2within

is the most-powerful test that prevents α-inflation for hypotheses:
H0 : µ1 = µ2 = · · · = µI

HA : At least two of the µ’s differ

• s2between IN TERMS OF A MEAN SQUARE & SUM OF SQUARES:

The variance between groups, s2between, is the variance of the I group means xi• scaled by common group size J :

s2between :=
J ·
∑
i(xi• − x••)

2

I − 1
=

∑
i

∑
j(α̂

A
i )2

I − 1
:=

SSA
νA

:= MSA

where the grand mean, x••, is the mean of the I group means, xi•: x•• := 1
I

∑
i xi• = 1

IJ

∑
i

∑
j xij

A large variance between groups indicates much of the observed variation is explained by the chosen Factor A.

• s2within IN TERMS OF A MEAN SQUARE & SUM OF SQUARES:

The variance within the groups, s2within, is the mean of the variances of the I groups:

s2within :=
1

I

∑
i s

2
i =

(J − 1) ·
∑
i s

2
i

I(J − 1)
=

∑
i

∑
j(xij − xi•)

2

I(J − 1)
=

∑
i

∑
j(x

res
ij )2

I(J − 1)
:=

SSres
νres

:= MSres

Effectively, a large variance within the groups indicates that much of the observed variation is not explained by the

chosen Factor A. Therefore, the within variance is considered unexplained error in the experiment.

• F -TEST STATISTIC VALUE IN TERMS OF MEAN SQUARES:

fA =
s2between
s2within

=
MSA

MSres

The test statistic value for 1-Factor ANOVA will be denoted fA instead of f .

In terms of the F -test notation in section 9.5, fA is always f+.

♠ R.A. Fisher, “The Correlation between Relatives on the Supposition of Mendelian Inheritance”,

Transactions of the Royal Society of Edinburgh, 52 (1918), 399-433.

♣ R.A. Fisher, Statistical Methods for Research Workers, 1925. (Ch VII)
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1-FACTOR BALANCED COMPLETELY RANDOMIZED ANOVA (1F bcrANOVA)

[DEVORE 10.1]

• 1F bcrANOVA (BALANCED COMPLETELY RANDOMIZED DESIGN): As an example:

– Collect 12 relevant experimental units (EU’s): EU1,EU2, · · · ,EU12

– Produce a random shuffle sequence using software: (4, 12, 5, 10; 7, 2, 1, 11; 3, 6, 8, 9)

– Use random shuffle sequence to assign the EU’s into the I levels.

– Measure each EU appropriately (note the change in notation):

FACTOR A: MEASUREMENTS:

Level 1 EU4, EU12, EU5, EU10

Level 2 EU7, EU2, EU1, EU11

Level 3 EU3, EU6, EU8, EU9

MEASURE
=⇒

FACTOR A: MEASUREMENTS:

Level 1 (x1•) x11, x12, x13, x14

Level 2 (x2•) x21, x22, x23, x24

Level 3 (x3•) x31, x32, x33, x34

EUk ≡
(
kth experimental unit collected

)
xij ≡

(
Measurement of jth experimental unit in ith level

)
xi• ≡

(
Group of all measurements in ith level

)
• 1F bcrANOVA (FIXED EFFECTS MODEL ASSUMPTIONS):

? (1 Desired Factor) Factor A has I levels.

? (All Factor Levels are Considered) AKA Fixed Effects.

? (Balanced Replication in Groups) Each group has J > 1 units.

? (Distinct Exp. Units ) All IJ units are distinct from each other.

? (Random Assignment across Groups)

? (Independence) All measurements on units are independent.

? (Normality) All groups are approximately normally distributed.

? (Equal Variances) All groups have approximately same variance.

Mnemonic: 1DF AFLaC BRiG DEU | RAaG | I.N.EV

• 1F bcrANOVA (SUMS OF SQUARES “PARTITION” VARIATION):

SStotal︸ ︷︷ ︸
Total V ariation in Experiment

= SSA︸︷︷︸
V ariation due to Factor A

+ SSres︸ ︷︷ ︸
Unexplained V ariation

∑
ij(xij − µ̂)2 =

∑
ij(α̂

A
i )2 +

∑
ij(x

res
ij )2

∑
i

∑
j(xij − x••)

2 =
∑
i

∑
j(xi• − x••)

2 +
∑
i

∑
j(xij − xi•)

2

ν︸︷︷︸
Total dof ′s in Experiment

= νA︸︷︷︸
′Between Groups′ dof ′s

+ νres︸︷︷︸
′Within Groups′ dof ′s

ν = IJ − 1 νA = I − 1 νres = I(J − 1)

• 1F bcrANOVA (EXPECTED MEAN SQUARES):

(i) E[MSres] = σ2, (ii) E[MSA] = σ2 +
J

I − 1

∑
i

(αAi )2

• 1F bcrANOVA (POINT ESTIMATORS OF σ2):

(i) MSres is always an unbiased point estimator of the population variance: E[MSres] = σ2

(ii) If the status quo prevails, MSA is an unbiased estimator of pop. variance: H0 is indeed true =⇒ E[MSA] = σ2

(iii) If the status quo fails, MSA tends to overestimate population variance: H0 is indeed false =⇒ E[MSA] > σ2
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1-FACTOR BALANCED COMPLETELY RANDOMIZED ANOVA (1F bcrANOVA)

[DEVORE 10.1]

• 1F bcrANOVA (FIXED EFFECTS LINEAR MODEL):

1F bcrANOVA Fixed Effects Linear Model

I ≡ # groups to compare

J ≡ # measurements in each group

Xij ≡ rv for jth measurement taken from ith group

µi ≡ Mean of ith population or true average response from ith group

µ ≡ Common population mean or true average overall response

αAi ≡ Deviation from µ due to ith group

Eij ≡ Deviation from µ due to random error

ASSUMPTIONS: Eij
iid∼ Normal

(
0, σ2

)
Xij = µ+ αAi + Eij where

∑
i α

A
i = 0

HA
0 : All αAi = 0

HA
A : Some αAi 6= 0

• 1F bcrANOVA (F -TEST PROCEDURE):

1. Determine df’s: n = IJ, νA = I − 1, νerr = I(J − 1)

2. Compute Group Means (if not provided): xi• := 1
J

∑
j xij︸ ︷︷ ︸

Given measurements

3. Compute Group Variances (if not provided): s2i := 1
J−1

∑
j(xij − xi•)

2︸ ︷︷ ︸
Given measurements

=
√
J · σ̂xi•︸ ︷︷ ︸

Given ESE’s

4. Compute Grand Mean: x•• := 1
I

∑
i xi•

5. Compute SSres :=
∑
ij(x

res
ij )2 =

∑
i

∑
j(xij − xi•)

2 = (J − 1) ·
∑
i s

2
i

6. Compute SSA :=
∑
ij(α̂

A
i )2 =

∑
i

∑
j(xi• − x••)

2

7. Compute Mean Squares: MSres :=
SSres
νres

, MSA :=
SSA
νA

8. Compute Test Statistic Value: fA =
MSA

MSres
9. Compute P-value: pA := P(F > fA) ≈ 1− ΦF (fA; νA, νres)

10. Render Decision:
(by software) If pA ≤ α then reject HA

0 in favor of HA
A , else accept HA

0 .

(by hand) If fA ≥ f∗νA,νres;α then reject HA
0 in favor of HA

A , else accept HA
0 .

• 1F bcrANOVA (SUMMARY TABLE):

1F bcrANOVA Table (Significance Level α)

Variation

Source
df

Sum of

Squares

Mean

Square

F Stat

Value
P-value Decision

Factor A νA SSA MSA fA pA Acc/Rej HA
0

Unknown νres SSres MSres

Total ν SStotal
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1-FACTOR ANOVA (EFFECT SIZE MEASURES) [DEVORE 10.1]

• EFFECT SIZE MEASURES (MOTIVATION):

Recall when performing a hypothesis test, statistical significance does not necessarily imply practical significance.

As Gravetter & Wallnau put it in §13.5 of their statistics textbook[GW ]:

“the term significant does not necessarily mean large, it simply means larger than expected by chance.”

Q: How to determine whether a statistically significant effect is a practical (i.e. large enough) effect??

A: Effect size measures! What follows are 3 such popular measures.

• EFFECT SIZE MEASURES DUE TO FISHER, KELLEY & HAYS:

YEAR NAME MEASURE HOW IT COMPARES∗

1925† Fisher[GW ],[H],[LH],[S] η̂2A :=
SSA

SStotal

Most biased (positively)♠

Least SD, Most RMSE♠

1935‡ Kelley ε̂2A :=
SSA − νAMSres

SStotal

Least biased (negatively)♠

Most SD, Nearly Least RMSE♠

1963♣ Hays[H],[LH],[S] ω̂2
A :=

SSA − νAMSres
SStotal + MSres

Moderately biased (negatively)♠

Moderate SD, Least RMSE♠

∗Requires all 1-Factor ANOVA assumptions (LADR’S RAIN EV) to be satisfied.

SD ≡ Standard Deviation, RMSE ≡ Root Mean Squared Error

†R.A. Fisher, Statistical Methods for Research Workers, 1925. (Chapter VIII, §45)

‡T.L. Kelley, “An Unbiased Correlation Ratio Measure”, Proceedings of Nat. Acad. Sciences, 21 (1935), 554-559.

♣W.L. Hays, Statistics for Psychologists, 1963.

♠K. Okada, “Is Omega Squared Less Biased? A Comparison ... ”, Behaviormetrika, 40 (2013), 129-147.

• EFFECT SIZE MEASURES (GENERAL REMARKS):

There are about 75 different effect size measures♦ that have been discovered!!
♦S.F. Davis (Ed.), Handbook of Research Methods in Experimental Psychology, 2003. (Chapter 5 by R.E. Kirk)

Moreover, realize that many of these measures are ’measures of association’ and, hence, are tailored for either

numerical-numerical (num-num) inference (Ch 12 & 13) or categorical-categorical (cat-cat) inference (Ch 14).

Cutoff values for “small”/“medium”/“large” effects vary by field[LH]:

– J. Cohen, Statistical Power Analysis for Behavioral Sciences, 1969. (§8.2)

Be very careful when interpreting values of effect size measures[S], especially for 2-Factor ANOVA or higher:

– K.E. O’Grady, “Measures of Explained Variance: Cautions and Limitations”, Psych. Bulletin, 92 (1982), 766-777.

– C.A. Pierce, R.A. Block, H. Aguinis, “Cautionary Note on Reporting Eta-Squared Values from Multifactor ANOVA Designs”,

Educational & Psychological Measurement, 64 (2004), 916-924.

• REFERENCES:

[GW ]
F.J. Gravetter

L.B. Wallnau

Statistics for the

Behavioral Sciences
7th Ed 2007

[H] D.C. Howell
Statistical Methods

for Psychology
7th Ed 2010

[LH]
R.G. Lomax

D.L. Hahs-Vaughn

Statistical Concepts :

A Second Course
4th Ed 2012

[S] J.P. Stevens
Intermediate Statistics

A Modern Approach
3rd Ed 2007
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EX 10.1.1: Given the following 1-factor balanced experiment:

FACTOR A: GROUP SIZE: MEASUREMENTS:

Level 1 (x1•) 4 x11, x12, x13, x14

Level 2 (x2•) 4 x21, x22, x23, x24

Level 3 (x3•) 4 x31, x32, x33, x34

(a) Formulate this experiment as a 1-Factor ANOVA fixed effects linear model.

(b) Use multivariable calculus to compute the least-squares estimators (LSE’s) for this linear model.

Be sure to explain why the constraint
∑
i αi = 0 is necessary to impose.

(c) Show that each least-squares estimator (LSE) found in part (b) is a linear combination of the data points.

(d) Establish the sums of squares partition for the general version of this linear model with I levels each of size J .
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EX 10.1.2: The lifetimes of three light bulb brands were measured and summarized into this table:

BULB BRAND (BULB LIFETIMES in yrs)

Brand 1 (x1•) 9.22, 9.07, 8.95, 8.98, 9.54

Brand 2 (x2•) 8.92, 8.88, 9.10, 8.71, 8.85

Brand 3 (x3•) 9.08, 8.99, 9.06, 8.93, 9.02

A 1-Factor Balanced Completely Randomized ANOVA (1F bcrANOVA) at significance level α = 0.01 is to be performed.

(a) Identify factor A and its levels.

(b) Determine factor A’s level count, I, common group sample size, J , and degrees of freedom, νres & νA.

(c) State the appropriate null hypothesis HA
0 & alternative hypothesis HA

A .

(d) Compute the cell means, xi•.

(e) Compute the cell variances, s2i .

(f) Compute the grand mean, x••.

(g) Compute the sums of squares, SSres & SSA.

(h) Compute the square means, MSres & MSA.

(i) Compute the test F -statistic, fA, and Fisher’s effect size measure, η̂2A.

(j) By hand, lookup F cutoff value, f∗νA,νres;α. By software (SW), compute resulting P-value, pA.

(k) Render the appropriate decision. Also, interpret Fisher’s effect size measure, η̂2A.

(l) Summarize everything in an 1-Factor ANOVA table.
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EX 10.1.3: Dentists use resin composites and ceramic fillings among others for cavities in teeth. The shear bond strengths of

resin composite-ceramic bonds formed from three possible configurations (conventional, reversed, all-composite) were measured

(in MPa) and summarized in the following table:

GROUP: SAMPLE SIZE: MEAN: STD DEV:

Conventional 10 x1• = 10.37 s1 = 1.99

Reversed 10 x2• = 18.02 s2 = 2.52

All-Composite 10 x3• = 21.82 s3 = 2.45

This table and all the details regarding the experiment can be found in the following paper:

A. Della Bona, R. van Noort, “Shear vs. Tensile Bond Strength of Resin Composite Bonded to Ceramic”,

Journal of Dental Research, 74 (1995), 1591-1596.

A 1-Factor Balanced Completely Randomized ANOVA (1F bcrANOVA) at significance level α = 0.05 is to be performed.

(a) Identify factor A and its levels.

(b) Determine factor A’s level count, I, common group sample size, J , and degrees of freedom, νres & νA.

(c) State the appropriate null hypothesis HA
0 & alternative hypothesis HA

A .

(d) Compute the grand mean, x••.

(e) Compute the sums of squares, SSres & SSA.

(f) Compute the square means, MSres & MSA.

(g) Compute the test F -statistic, fA, and Fisher’s effect size measure, η̂2A.

(h) By hand, lookup F cutoff value, f∗νA,νres;α. By software (SW), compute resulting P-value, pA.

(i) Render the appropriate decision. Also, interpret Fisher’s effect size measure, η̂2A.

(j) Summarize everything in an 1-Factor ANOVA table.
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