BULB BRAND	(BULB LIFETIMES in yrs)
Brand $1\left(x_{1} \bullet\right)$	$9.22,9.07,8.95,8.98,9.54$
Brand $2\left(x_{2} \bullet\right)$	$8.92,8.88,9.10$
Brand $3\left(x_{3} \bullet\right)$	$9.08,8.99,9.06,8.93$

(a) Formulate this experiment as a 1-Factor ANOVA fixed effects linear model.

$$
\begin{aligned}
\mu & \equiv \text { Common population mean lifetime of the three bulb brands } \\
X_{i j}=\mu+\alpha_{i}^{A}+E_{i j} \quad \text { where } \quad \alpha_{i}^{A} & \equiv \text { Lifetime deviation from } \mu \text { due to Brand } i \text { bulb } \\
E_{i j} & \equiv \text { Lifetime deviation from } \mu \text { due to random error/noise }
\end{aligned}
$$

(b) Perform the appropriate 1-Factor ANOVA at significance level $\alpha=0.01$ - compute both the F-cutoff and P-value.

$$
\begin{aligned}
& I=3 ; J_{1}=5, J_{2}=3, J_{3}=4 \Longrightarrow n=\sum_{i} J_{i}=5+3+4=12 \Longrightarrow \nu_{\text {res }}=n-I=12-3=9, \nu_{A}=I-1=3-1=2 \\
& \bar{x}_{1} \bullet:=\frac{1}{J_{1}} \sum_{j=1}^{J_{1}} x_{1 j}=\frac{1}{5}(9.22+9.07+8.95+8.98+9.54)=9.152 \\
& \bar{x}_{2 \bullet}:=\frac{1}{J_{2}} \sum_{j=1}^{J_{2}} x_{2 j}=\frac{1}{3}(8.92+8.88+9.10) \quad \approx 8.967 \\
& \bar{x}_{3} \bullet:=\frac{1}{J_{3}} \sum_{j=1}^{J_{3}} x_{3 j}=\frac{1}{4}(9.08+8.99+9.06+8.93) \quad=9.015 \\
& \bar{x}_{\bullet \bullet} \quad:=\frac{1}{I} \sum_{i} \bar{x}_{i} \bullet \quad=\frac{1}{3}(9.152+8.967+9.015) \quad \approx 9.045 \\
& s_{1}^{2}:=\frac{1}{J_{1}-1} \sum_{j=1}^{J_{1}}\left(x_{1 j}-\bar{x}_{1} \bullet\right)^{2}=\frac{1}{5-1}\left[\begin{array}{l}
(9.22-9.152)^{2}+(9.07-9.152)^{2}+(8.95-9.152)^{2} \\
+(8.98-9.152)^{2}+(9.54-9.152)^{2}
\end{array}\right]=0.05807 \\
& s_{2}^{2}:=\frac{1}{J_{2}-1} \sum_{j=1}^{J_{2}}\left(x_{2 j}-\bar{x}_{2}\right)^{2}=\frac{1}{3-1}\left[(8.92-8.967)^{2}+(8.88-8.967)^{2}+(9.10-8.967)^{2}\right]=0.01373 \\
& s_{3}^{2}:=\frac{1}{J_{3}-1} \sum_{j=1}^{J_{3}}\left(x_{3 j}-\bar{x}_{3 \bullet}\right)^{2}=\frac{1}{4-1}\left[\begin{array}{l}
(9.08-9.015)^{2}+(8.99-9.015)^{2}+(9.06-9.015)^{2} \\
+(8.93-9.015)^{2}
\end{array}\right] \approx 0.0047 \\
& \mathrm{SS}_{\text {res }}:=\sum_{i}\left(J_{i}-1\right) s_{i}^{2}=(5-1)(0.05807)+(3-1)(0.01373)+(4-1)(0.0047)=0.27384 \\
& \mathrm{SS}_{A}:=\sum_{i} J_{i}\left(\bar{x}_{\bullet \bullet}-\bar{x}_{\bullet \bullet}\right)^{2}=5(9.152-9.045)^{2}+3(8.967-9.045)^{2}+4(9.015-9.045)^{2}=0.0791 \\
& \mathrm{MS}_{\text {res }}:=\frac{\mathrm{SS}_{\text {res }}}{\nu_{\text {res }}}=\frac{0.27384}{9}=0.0304, \quad \mathrm{MS}_{A}:=\frac{\mathrm{SS}_{A}}{\nu_{A}}=\frac{0.0791}{2}=0.03955 \\
& f_{A}:=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{\text {res }}}=\frac{0.03955}{0.0304} \approx 1.301
\end{aligned}
$$

By hand: $\quad f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}=f_{2,9 ; 0.01}^{*} \stackrel{\text { LOOKUP }}{\approx} \mathbf{8 . 0 2}$
By $\quad \mathrm{SW}: \quad p_{A}:=\mathbb{P}\left(F>f_{A}\right)=1-\Phi_{F}\left(f_{A} ; \nu_{A}, \nu_{\text {res }}\right)=1-\Phi_{F}\left(1.301 ; \nu_{1}=2, \nu_{2}=9\right) \stackrel{S W}{\approx} 1-0.6811 \approx \mathbf{0 . 3 1 8 9}$
Since either by hand, $f_{A} \approx 1.301<8.02 \approx f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}$, or, by software, $p_{A} \approx 0.3189>0.01=\alpha$, accept H_{0}^{A}.
There's not enough evidence from the experiment to claim that at least two of the bulb brands' avg. lifetimes differ.
(c) Summarize everything in an 1-Factor ANOVA table.

1-Factor ANOVA Table (Significance Level $\alpha=0.01$)						
Variation Source	df	Sum of Squares	$\begin{gathered} \text { Mean } \\ \text { Square } \end{gathered}$	$\begin{aligned} & \hline F \text { Stat } \\ & \text { Value } \end{aligned}$	P-value	Decision
Factor A	2	0.07910	0.03955	1.301	0.3189	Accept H_{0}^{A}
Unknown	9	0.27384	0.0304			
Total	11	0.35294				

EX 10.3.2: Dentists use resin composites and ceramic fillings among others for cavities in teeth. The shear bond strengths of resin composite-ceramic bonds formed from three possible configurations (conventional, all-composite, reversed) were measured (in MPa) and summarized in the following table:

GROUP:	SAMPLE SIZE:	MEAN:	STD DEV:
Conventional	9	$\bar{x}_{1} \bullet 10.37$	$s_{1}=1.99$
All-Composite	8	$\bar{x}_{2 \bullet}=21.82$	$s_{2}=2.45$
Reversed	6	$\bar{x}_{3 \bullet}=18.02$	$s_{3}=2.52$

This table and all the details regarding the experiment can be found in the following paper:
A. Della Bona, R. van Noort, "Shear vs. Tensile Bond Strength of Resin Composite Bonded to Ceramic", Journal of Dental Research, 74 (1995), 1591-1596.
(a) Formulate this experiment as a 1-Factor ANOVA fixed effects linear model.

$$
\begin{aligned}
& \mu \equiv \text { Common population mean shear bond strength of the three configurations } \\
& X_{i j}=\mu+\alpha_{i}^{A}+E_{i j} \text { where } \alpha_{i}^{A} \equiv \text { Shear bond strength deviation from } \mu \text { due to } i^{\text {th }} \text { configuration } \\
& E_{i j} \equiv \text { Shear bond strength deviation from } \mu \text { due to random error/noise }
\end{aligned}
$$

(b) Perform the appropriate 1-Factor ANOVA at significance level $\alpha=0.05$ - compute both the F-cutoff and P -value.
$I=3 ; J_{1}=9, J_{2}=6, J_{3}=8 \Longrightarrow n=\sum_{i} J_{i}=9+6+8=23 \Longrightarrow \nu_{\text {res }}=n-I=23-3=20, \quad \nu_{A}=I-1=3-1=2$

$$
\begin{array}{rllll}
\bar{x}_{\bullet \bullet} & := & \frac{1}{I} \sum_{i} \bar{x}_{i} \bullet & =\frac{1}{3}(10.37+21.82+18.02) & \approx 16.737 \\
\mathrm{SS}_{\text {res }} & :=\quad \sum_{i}\left(J_{i}-1\right) s_{i}^{2} & =(9-1) \cdot 1.99^{2}+(8-1) \cdot 2.45^{2}+(6-1) \cdot 2.52^{2} & =105.4503 \\
\mathrm{SS}_{A} & :=\sum_{i} J_{i}\left(\bar{x}_{i}-\bar{x}_{\bullet \bullet}\right)^{2} & =9 \cdot(10.37-16.737)^{2}+8 \cdot(21.82-16.737)^{2}+6 \cdot(18.02-16.737)^{2}=581.4198 \\
& & \\
\mathrm{MS}_{\text {res }} & :=\frac{\mathrm{SS}_{\text {res }}}{\nu_{\text {res }}}=\frac{105.4503}{20}=5.272515, \quad \mathrm{MS}_{A}:=\frac{\mathrm{SS}_{A}}{\nu_{A}}=\frac{581.4198}{2}=290.7099 & \\
f_{A}:=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{\text {res }}}=\frac{290.7099}{5.272515} \approx \mathbf{5 5 . 1 3 6 9} &
\end{array}
$$

By hand: $\quad f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}=f_{2,20 ; 0.05}^{*} \stackrel{\text { LOOKUP }}{\approx} \mathbf{3 . 4 9}$
By $\quad \mathrm{SW}: \quad p_{A}:=\mathbb{P}\left(F>f_{A}\right)=1-\Phi_{F}\left(f_{A} ; \nu_{A}, \nu_{r e s}\right)=1-\Phi_{F}\left(55.1369 ; \nu_{1}=2, \nu_{2}=20\right) \stackrel{S W}{\approx} 1-0.999999992727 \approx \mathbf{7 . 2 7 3} \times \mathbf{1 0}^{-9}$
Since either by hand, $f_{A} \approx 55.1369 \gg 3.49 \approx f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}$, or, by software, $p_{A} \approx 7.273 \times 10^{-9} \ll 0.05=\alpha$, reject H_{0}^{A}.
There's enough evidence from the experiment to claim that at least two of the bond configs' avg. shear bond strengths differ.
(c) Perform the appropriate Tukey-Kramer Complete Pairwise Post-Hoc Comparison.

$$
\begin{aligned}
& w_{(12)}=q_{I, \nu_{\text {res }} ; \alpha}^{*} \cdot \sqrt{\mathrm{MS}_{\text {res }} \cdot \frac{1}{2}\left(\frac{1}{J_{1}}+\frac{1}{J_{3}}\right)} \approx q_{3,20 ; 0.05}^{*} \cdot \sqrt{5.272515 \cdot \frac{1}{2}\left(\frac{1}{9}+\frac{1}{8}\right)} \stackrel{\text { LOOKUP }}{\approx} 3.58 \cdot \sqrt{5.272515 \cdot \frac{17}{144}} \approx \mathbf{2 . 8 2 4} \\
& w_{(13)}=q_{I, \nu_{r e s} ; \alpha}^{*} \cdot \sqrt{\mathrm{MS}_{\text {res }} \cdot \frac{1}{2}\left(\frac{1}{J_{1}}+\frac{1}{J_{2}}\right)} \approx q_{3,20 ; 0.05}^{*} \cdot \sqrt{5.272515 \cdot \frac{1}{2}\left(\frac{1}{9}+\frac{1}{6}\right)} \stackrel{\text { LOOKUP }}{\approx} \quad \mathbf{3 . 5 8} \cdot \sqrt{5.272515 \cdot \frac{5}{36}} \approx \mathbf{3 . 0 6 4} \\
& w_{(23)}=q_{I, \nu_{r e s} ; \alpha}^{*} \cdot \sqrt{\mathrm{MS}_{r e s} \cdot \frac{1}{2}\left(\frac{1}{J_{2}}+\frac{1}{J_{3}}\right)} \approx q_{3,20 ; 0.05}^{*} \cdot \sqrt{5.272515 \cdot \frac{1}{2}\left(\frac{1}{8}+\frac{1}{6}\right)} \stackrel{\text { LOOKUP }}{\approx} \quad \mathbf{3 . 5 8} \cdot \sqrt{5.272515 \cdot \frac{7}{48}} \quad \approx \quad \mathbf{3 . 1 3 9} \\
& \bar{x}_{(2) \bullet} \notin\left(\bar{x}_{(1) \bullet}, \bar{x}_{(1) \bullet}+w_{(12)}\right), \quad \bar{x}_{(3) \bullet} \notin\left(\bar{x}_{(1) \bullet}, \bar{x}_{(1) \bullet}+w_{(13)}\right), \quad \bar{x}_{(3) \bullet} \in\left(\bar{x}_{(2) \bullet}, \bar{x}_{(2) \bullet}+w_{(23)}\right) \\
& \begin{array}{ccc}
\bar{x}_{(1) \bullet} & \bar{x}_{(2) \bullet} & \bar{x}_{(3) \bullet} \\
\bar{x}_{1} \bullet & \bar{x}_{3} \bullet & \bar{x}_{2} \bullet \\
10.37 & 18.02 & 21.82 \\
\hline
\end{array}
\end{aligned}
$$

The experiment suggests that the all-composite and reversed configurations each have a significantly higher shear bond strength than the conventional.

The experiment suggests that there is not a significant difference in shear bond strength between the all-composite and reversed configurations.

