Given a 1-factor unbalanced experiment with $I>2$ groups, each of size J_{i}.
Let $X_{i j} \equiv$ random variable for $j^{t h}$ measurement in the $i^{\text {th }}$ group.
Then, the fixed effects linear (statistical) model for the experiment is defined as:

$$
X_{i j}=\mu+\alpha_{i}^{A}+E_{i j} \quad \text { where } \quad E_{i j} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

$\mu \equiv$ population grand mean of all I population means
$\alpha_{i}^{A} \equiv$ deviation of $i^{\text {th }}$ population mean μ_{i} from μ due to Factor A $E_{i j} \equiv \mathrm{rv}$ for error/noise applied to $j^{t h}$ measurement in $i^{\text {th }}$ group

Fixed effects means all relevant levels of factor A are considered in model.
1-FACTOR LINEAR MODEL (MOTIVATING EXAMPLES):

$$
\begin{gathered}
X_{i j}=\mu \\
\mu:=3.2 \\
\mu_{1}=3.2, \quad \mu_{2}=3.2, \quad \mu_{3}=3.2
\end{gathered}
$$

FACTOR A:	MEASUREMENTS:		
Level $1\left(x_{1 \bullet}\right)$	$x_{11}=3.2$,	$x_{12}=3.2, \quad x_{13}=3.2$	
Level $2\left(x_{2 \bullet}\right)$	$x_{21}=3.2$,	$x_{22}=3.2, \quad x_{23}=3.2, \quad x_{24}=3.2$	
Level $3\left(x_{3 \bullet}\right)$	$x_{31}=3.2$,	$x_{32}=3.2$	

$$
\begin{gathered}
X_{i j}=\mu+\alpha_{i}^{A} \\
\mu:=3.2 \\
\alpha_{1}^{A}:=-5.5, \alpha_{2}^{A}:=-2.0, \alpha_{3}^{A}:=7.5 \\
\mu_{1}=-2.3, \mu_{2}=1.2, \quad \mu_{3}=10.7
\end{gathered}
$$

FACTOR A:	MEASUREMENTS:		
Level $1\left(x_{1 \bullet}\right)$	$x_{11}=-2.3$,	$x_{12}=-2.3, \quad x_{13}=-2.3$	
Level $2\left(x_{2 \bullet}\right)$	$x_{21}=1.2$,	$x_{22}=1.2, \quad x_{23}=1.2, \quad x_{24}=1.2$	
Level $3\left(x_{3 \bullet}\right)$	$x_{31}=10.7$,	$x_{32}=10.7$	

$$
X_{i j}=\mu+\alpha_{i}^{A}+E_{i j}
$$

$$
\begin{gathered}
\mu:=3.2, \alpha_{1}^{A}:=-5.5, \alpha_{2}^{A}:=-2.0, \alpha_{3}^{A}:=7.5, E_{i j} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma^{2}:=3.24\right) \\
\mu_{1}=-2.3, \mu_{2}=1.2, \mu_{3}=10.7
\end{gathered}
$$

FACTOR A:	MEASUREMENTS:		
Level $1\left(x_{1 \bullet}\right)$	$x_{11}=-1.23$,	$x_{12}=-1.17, \quad x_{13}=0.05$	
Level $2\left(x_{2 \bullet}\right)$	$x_{21}=0.54$,	$x_{22}=1.03, \quad x_{23}=0.62, \quad x_{24}=1.63$	
Level $3\left(x_{3 \bullet}\right)$	$x_{31}=13.64$,	$x_{32}=12.30$	

Given a 1-factor unbalanced linear model: $X_{i j}=\mu+\alpha_{i}^{A}+E_{i j} \quad$ where $\quad E_{i j} \stackrel{i d}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right) \quad$ Then:
(a) The least-squares ${ }^{\boldsymbol{\dagger} \boldsymbol{*}}$ estimators $^{\dagger \ddagger}$ (LSE’s) for the model parameters are:

$$
\begin{aligned}
\hat{\mu} & =\bar{x}_{\bullet \bullet} & \text { where } & \bar{x}_{\bullet \bullet}
\end{aligned}
$$

(b) For these least-squares estimators, it's required that $\sum_{i} J_{i} \hat{\alpha}_{i}^{A}=0$.
(c) These least-squares estimators are all unbiased.
†A. Dean, D. Voss, D. Draguljić, Design \& Analysis of Experiments, $2^{\text {nd }}$ Ed, Springer, 2017. (§3.4.3)
${ }^{\ddagger}$ D.C. Montgomery, Design \& Analysis of Experiments, $7^{\text {th }}$ Ed, Wiley, 2009. $\quad(\S 3.3 .3, \S 3.10 .1)$
$\boldsymbol{\wedge}_{\text {A.M. Legendre, Nouvelles Méthodes pour la Détermination des Orbites des Comètes, } 1806 . ~}^{\text {A. }}$
${ }^{\boldsymbol{N}}$ Gauss, Theoria Motus Corporum Coelestrium in Sectionibus Conicis Solem Ambientium, 1809.

1-FACTOR UNBALANCED LINEAR MODEL (PREDICTED RESPONSES \& RESIDUALS):

Given a 1-factor unbalanced linear model:

$$
X_{i j}=\mu+\alpha_{i}^{A}+E_{i j} \quad \text { where } \quad E_{i j} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

Then the corresponding predicted responses, denoted $\hat{x}_{i j}$, are:

$$
\hat{x}_{i j}:=\hat{\mu}+\hat{\alpha}_{i}^{A}=\bar{x}_{\bullet \bullet}+\left(\bar{x}_{i \bullet}-\bar{x}_{\bullet \bullet}\right)=\bar{x}_{i \bullet}
$$

Moreover, the corresponding residuals, denoted $x_{i j}^{r e s}$, are:

$$
x_{i j}^{r e s}:=x_{i j}-\hat{x}_{i j}=x_{i j}-\bar{x}_{i \bullet}
$$

1-FACTOR LINEAR MODEL (GAUSS ${ }^{1}$-MARKOV ${ }^{2}$ THEOREM):

Given a 1-factor unbalanced linear model: $\quad X_{i j}=\mu+\alpha_{i}^{A}+E_{i j}$
Moreover, suppose the following conditions are all satisfied:

$$
\begin{aligned}
& \mathbb{E}\left[E_{i j}\right]=0 \\
& \mathbb{V}\left[E_{i j}\right]=\sigma^{2} \quad \text { (errors are all centered at zero) } \\
& \mathbb{C}\left[E_{i j}, E_{i^{\prime} j^{\prime}}\right]=0 \quad \text { (errors all have the same finite variance) } \\
&\text { (errelated when } \left.i \neq i^{\prime} \text { or } j \neq j^{\prime}\right)
\end{aligned}
$$

Then, the least-squares estimators $\hat{\mu}, \hat{\alpha}_{i}^{A}$ are all BLUE's.
${ }^{1}$ C.F. Gauss, "Theoria Combinationis Observationum Erroribus Minimis Obnoxiae", (1823), 1-58.
${ }^{2}$ A.A. Markov, Calculus of Probabilities, $1^{\text {st }}$ Edition, 1900.

- 1F ucrANOVA (MOTIVATION): A 1 F ucrANOVA is used if:
- Some experimental units (EU's) in a balanced exp. malfunction, bite experimenters ${ }^{\dagger}$, move away or die.
- The levels of Factor A naturally differ in size - e.g. classroom rosters ${ }^{\dagger}$.
- Some levels of Factor A are prohibitively expensive to carry out ${ }^{\ddagger}$ (and, hence, have fewer EU’s).
- Some levels of Factor A are far more interesting than others ${ }^{\ddagger}$ (and, hence, have more EU’s).
${ }^{\dagger}$ D.C. Howell, Statistical Methods for Psychology, $7^{\text {th }}$ Edition, Cengage, 2010. (§15.2)
${ }^{\ddagger}$ D.C. Montgomery, Design and Analysis of Experiments, $7^{\text {th }}$ Edition, Wiley, 2009. (§15.2)
- 1F ucrANOVA (FIXED EFFECTS MODEL ASSUMPTIONS):
* (1 Desired Factor) Factor A has I levels.
\star (All Factor Levels are Considered) AKA Fixed Effects.
\star (Replication in Groups) Each group has $J_{i}>1$ units.
\star (Distinct Exp. Units) All $\sum_{i} J_{i}$ units are distinct from each other.
* (́Random Assignment across Groups)
* (Independence) All measurements on units are independent.
* (Normality) All groups are approximately normally distributed.
* (Equal Variances) All groups have approximately same variance.

Mnemonic: 1DF AFLaC RiG DEU | RAaG | I.N.EV

- 1F ucrANOVA (SUMS OF SQUARES "PARTITION" VARIATION): $\left(n:=\sum_{i} J_{i}\right)$

$$
\nu=n-1 \quad \nu_{A}=I-1 \quad \nu_{\text {res }}=n-I
$$

- 1F ucrANOVA (EXPECTED MEAN SQUARES):

(i) $\mathbb{E}\left[\mathrm{MS}_{\text {res }}\right]=\sigma^{2}$,
(ii) $\mathbb{E}\left[\mathrm{MS}_{A}\right]=\sigma^{2}+\frac{1}{I-1} \sum_{i} J_{i}\left(\alpha_{i}^{A}\right)^{2}$

- 1F ucrANOVA (POINT ESTIMATORS OF σ^{2}):
(i) $\mathrm{MS}_{\text {res }}$ is always an unbiased point estimator of the population variance: $\mathbb{E}\left[\mathrm{MS}_{\text {res }}\right]=\sigma^{2}$
(ii) If the status quo prevails, MS_{A} is an unbiased estimator of $\sigma^{2}: \quad H_{0}$ is indeed true $\Longrightarrow \mathbb{E}\left[\mathrm{MS}_{A}\right]=\sigma^{2}$
(iii) If the status quo fails, MS_{A} tends to overestimate $\sigma^{2}: \quad H_{0}$ is indeed false $\Longrightarrow \mathbb{E}\left[\mathrm{MS}_{A}\right]>\sigma^{2}$
- 1F ucrANOVA (FIXED EFFECTS LINEAR MODEL):

- 1F ucrANOVA (PROCEDURE):

1. Determine df's: $n:=\sum_{i} J_{i}, \quad \nu_{A}=I-1, \quad \nu_{\text {res }}=n-I$
2. Compute Group Means (if not provided): $\bar{x}_{i \bullet}:=\underbrace{\frac{1}{J_{i}} \sum_{j=1}^{J_{i}} x_{i j}}_{\text {Given observations }}$ for $i=1, \cdots, I$
3. Compute Group Variances (if not provided): $s_{i}^{2}:=\underbrace{\frac{1}{J_{i}-1} \sum_{j=1}^{J_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}}_{\text {Given observations }}=\underbrace{\sqrt{J_{i}} \cdot \widehat{\sigma}_{\bar{x}_{i}}}_{\text {Given ESE's }}$ for $i=1, \cdots, I$
4. Compute Grand Mean: $\bar{x}_{\bullet \bullet}:=\frac{1}{I} \sum_{i} \bar{x}_{\bullet}$
5. Compute $\mathrm{SS}_{\text {res }}:=\sum_{i} \sum_{j=1}^{J_{i}}\left(x_{i j}^{r e s}\right)^{2}=\sum_{i} \sum_{j=1}^{J_{i}}\left(x_{i j}-\bar{x}_{i \bullet}\right)^{2}=\sum_{i}\left(J_{i}-1\right) \cdot s_{i}^{2}$
6. Compute $\mathrm{SS}_{A}:=\sum_{i} \sum_{j=1}^{J_{i}}\left(\hat{\alpha}_{i}^{A}\right)^{2}=\sum_{i} \sum_{j=1}^{J_{i}}\left(\bar{x}_{\bullet} \bullet-\bar{x}_{\bullet \bullet}\right)^{2}$
7. Compute Mean Squares: $\mathrm{MS}_{\text {res }}:=\frac{\mathrm{SS}_{\text {res }}}{\nu_{\text {res }}}, \quad \quad \mathrm{MS}_{A}:=\frac{\mathrm{SS}_{A}}{\nu_{A}}$
8. Compute Test Statistic Value: $f_{A}=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{\text {res }}}$
9. Compute P-value: $p_{A}:=\mathbb{P}\left(F>f_{A}\right) \approx 1-\Phi_{F}\left(f_{A} ; \nu_{A}, \nu_{\text {res }}\right)$
10. Render Decision: (by software) If $\quad p_{A} \leq \alpha \quad$ then reject H_{0}^{A} in favor of H_{A}^{A}, else accept H_{0}^{A}. (by hand) If $f_{A} \geq f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*} \quad$ then reject H_{0}^{A} in favor of H_{A}^{A}, else accept H_{0}^{A}.

- 1F ucrANOVA (TABLE):

1F ucrANOVA Table						
(Significance Level α)						
Variation	df	Sum of	Mean	F Stat	P-value	Decision
Source		Squares	Square	Value		
Factor A	ν_{A}	SS_{A}	MS_{A}	f_{A}	p_{A}	Accept/Reject H_{0}^{A}
Unknown	$\nu_{\text {res }}$	$\mathrm{SS}_{\text {res }}$	$\mathrm{MS}_{\text {res }}$			
Total	ν	$\mathrm{SS}_{\text {total }}$				

1F ucrANOVA (TUKEY-KRAMER COMPARISONS) [DEVORE 10.3]

- SIMULTANEOUS Q-CI's FOR MEAN DIFFERENCES:

Given an unbalanced experiment with I groups each of size J_{i} such that the 1 F ucrANOVA assumptions are satisfied.
Then the approximate simultaneous $100(1-\alpha) \% Q$-CI's for all mean differences $\mu_{i}-\mu_{j}$ are:

$$
\left(\bar{x}_{i} \bullet-\bar{x}_{j \bullet}\right) \pm q_{I, \nu_{r e s} ; \alpha}^{*} \cdot \sqrt{\mathrm{MS}_{r e s} \cdot \frac{1}{2}\left(\frac{1}{J_{i}}+\frac{1}{J_{j}}\right)} \quad \forall i<j \quad\left(n:=\sum_{i} J_{i}, \quad \nu_{r e s}:=n-I\right)
$$

If Q-CI for $\mu_{i}-\mu_{j}$ does not contain zero, then $\mu_{i} \& \mu_{j}$ significantly differ.

- TUKEY-KRAMER COMPLETE PAIRWISE POST-HOC COMPARISON: (Simpler than finding Q-CI's)

Given an unbalanced experiment with I groups each of size $J_{i} \quad\left(n:=\sum_{i} J_{i}\right)$
where 1 F ucrANOVA rejects H_{0}^{A} at significance level α and the J_{i} 's only differ slightly.
Then, to determine which population means significantly differ:

1. Sort the group means in ascending order: $\bar{x}_{(1) \bullet} \leq \bar{x}_{(2) \bullet} \leq \cdots \leq \bar{x}_{(I)} \bullet$
2. Compute significant difference widths $\quad w_{(i j)}=q_{I, \nu_{r e s} ; \alpha}^{*} \cdot \sqrt{\mathrm{MS}_{r e s} \cdot \frac{1}{2}\left(\frac{1}{J_{(i)}}+\frac{1}{J_{(j)}}\right)} \quad\left(\nu_{r e s}:=n-I\right)$
3. If $\bar{x}_{(j) \bullet} \in\left[\bar{x}_{(i) \bullet}, \bar{x}_{(i) \bullet}+w_{(i j)}\right]$, underline $\bar{x}_{(i) \bullet}$ and $\bar{x}_{(j) \bullet}$ with new line.
4. Repeat STEP 1 with all sorted mean pairs $\bar{x}_{(i) \bullet}, \bar{x}_{(j)} \bullet$ such that $i<j$.

Interpretation:

- Group means sharing a common underline implies they are not significantly different from one another.
- Group means not sharing a common underline implies they are significantly different from one another.

- 1F ANOVA MODEL CHECKING: STANDARDIZED RESIDUALS:

Given a 1-factor experiment, either balanced or only slightly unbalanced:

$$
X_{i j}=\mu+\alpha_{i}^{A}+E_{i j}
$$

Moreover, suppose 1F bcrANOVA / ucrANOVA was performed accordingly.
Then, the standardized residuals ${ }^{\dagger}$ are defined to be:

$$
z_{i j}^{\text {res }}:=\frac{x_{i j}^{r e s}}{\sqrt{\mathrm{SS}_{r e s} /(n-1)}}
$$

An alternative definition ${ }^{\ddagger}$ that's reasonable but not used here is: $\frac{x_{i j}^{\text {res }}}{\sqrt{\mathrm{MS}_{\text {res }}}}$
${ }^{\dagger}$ Dean, Voss et al, Design $\mathcal{E B}^{\text {A Analysis of Experiments, } 2 \text { nd }}$ Ed, 2017. (§5.2.1)
${ }^{\ddagger}$ Montgomery, Design \S Analysis of Experiments, $7{ }^{\text {th }}$ Ed, Wiley, 2009. (§3.4.1)

1F ANOVA MODEL CHECK PLOTS (OUTLIERS)

- GOOD PLOT SUGGESTING NO OUTLIERS ARE PRESENT:

- BAD PLOT SUGGESTING THE PRESENCE OF (POSSIBLE) OUTLIERS:

Measurements between two and three standard deviations are possibly outliers.
Measurements beyond three standard deviations are definitely outliers.

- MITIGATION WHEN OUTLIER(S) ARE PRESENT:

If outlier was due to measurement error, correct it ${ }^{\dagger \ddagger}$.
Else, it may be due to violation(s) of the ANOVA assumptions ${ }^{\dagger}$.
Else, the 1-factor linear model may be insufficient ${ }^{\dagger}$.
"We should be careful not to reject or discard an outlying observation unless we have reasonably non-statistical grounds for doing so. At worst, you may end up with two analyses; one with the outlier and one without." ${ }^{\ddagger}$
${ }^{\dagger}$ A. Dean, D. Voss, D. Draguljić, Design \mathcal{E}^{3} Analysis of Experiments, $2^{\text {nd }}$ Ed, 2017. (§5.4)
${ }^{\ddagger}$ D.C. Montgomery, Design \mathcal{E} Analysis of Experiments, $7^{\text {th }}$ Ed, Wiley, 2009. (§3.4.1)

1F ANOVA MODEL CHECK PLOTS (NORMALITY)

- GOOD PLOT SUGGESTING NORMALITY ASSUMPTION IS SATISFIED:

- BAD PLOT SUGGESTING NORMALITY ASSUMPTION IS VIOLATED:

- MITIGATION WHEN NORMALITY ASSUMPITION IS VIOLATED:

Q: How to perform a 1F ANOVA when the Normality Assumption is violated?
A: Perform a 1F Kruskal-Wallis ANOVA which does not assume normality - to be covered in Ch15.
"W.H. Kruskal, W.A. Wallis, "Use of Ranks in 1-Criterion Variance Analysis", J. Amer. Stat. Assoc., 47 (1952), 583-621.

- GOOD PLOT SUGGESTING INDEPENDENCE ASSUMPTION IS SATISFIED:

There's no discernible pattern.

- BAD PLOTS SUGGESTING INDEPENDENCE ASSUMPTION IS VIOLATED:

There's a clear pattern in each plot: (left) cycle and (right) fan

- MITIGATION WHEN INDEPENDENCE ASSUMPITION IS VIOLATED:
- If randomization was not used, redo the experiment using randomization ${ }^{\ddagger}$.
- If randomization was used, then use a more complicated model ${ }^{\dagger}$:
* 2-Factor ANOVA - to be covered in Ch11
* Analysis of Covariance (ANCOVA) - beyond scope of this course
${ }^{\dagger}$ A. Dean, D. Voss, D. Draguljić, Design \mathcal{E}^{\prime} Analysis of Experiments, $2^{\text {nd }}$ Ed, Springer, 2017.
${ }^{\ddagger}$ D.C. Montgomery, Design \mathcal{B} Analysis of Experiments, $7^{\text {th }}$ Ed, Wiley, 2009. (§3.4.2)

- BAD PLOT SUGGESTING EQUI-VARIANCE ASSUMPTION IS VIOLATED:

- MITIGATION WHEN EQUI-VARIANCE ASSUMPITION IS VIOLATED:

Perform the appropriate variance-stabilizing data transformation ${ }^{\dagger \dagger \boldsymbol{\omega}}$ from the following:
$\log X, \log (1+X), \log \left(1+\min x_{i j}+X\right), \sqrt{X}, \sqrt{0.5+X}, \sqrt{X}+\sqrt{1+X}, 1 / X, 1 / \sqrt{X}, \arcsin (\sqrt{X}), 2 \arcsin (\sqrt{X \pm 1 / 2 m})$
If data are counts or Poisson-like, use a square-root transformation ${ }^{\dagger \ddagger \boldsymbol{*}}$.
If data are proportions or Binomial-like, use an arcsine transformation ${ }^{\dagger \boldsymbol{\omega}}$.
When in doubt, plot $\log s_{i}$ vs. $\log \left(\bar{x}_{i} \bullet\right)$ to help determine appropriate data transformation ${ }^{\dagger \ddagger}$.
If data transformations do not seem to help much, a more robust method is necessary ${ }^{\rho}$.
${ }^{\dagger}$ A. Dean, D. Voss, D. Draguljić, Design \mathcal{E} Analysis of Experiments, $2^{\text {nd }}$ Ed, Springer, 2017. (§5.6.2)
${ }^{\ddagger}$ D.C. Montgomery, Design $\xi^{\text {A }}$ Analysis of Experiments, $7^{\text {th }}$ Ed, Wiley, 2009. (§3.4.3)
${ }^{*}$ D.C. Howell, Statistical Methods for Psychology, $7^{\text {th }}$ Ed, Cengage, 2010. (§11.9)
${ }^{\ominus}$ R.J. Grissom, "Heterogeneity of Variance in Clinical Data", J. Consulting \& Clinical Psychology, 68 (2000), 155-165.

BULB BRAND	(BULB LIFETIMES in yrs)
Brand $1\left(x_{1} \bullet\right)$	$9.22,9.07,8.95,8.98,9.54$
Brand $2\left(x_{2} \bullet\right)$	$8.92,8.88,9.10$
Brand $3\left(x_{3} \bullet\right)$	$9.08,8.99,9.06,8.93$

(a) Formulate this experiment as a 1-Factor ANOVA fixed effects linear model.
(b) Perform the appropriate 1-Factor ANOVA at significance level $\alpha=0.01$ - compute both the F-cutoff and P-value.
(c) Summarize everything in an 1-Factor ANOVA table.

EX 10.3.2: Dentists use resin composites and ceramic fillings among others for cavities in teeth. The shear bond strengths of resin composite-ceramic bonds formed from three possible configurations (conventional, all-composite, reversed) were measured (in MPa) and summarized in the following table:

GROUP:	SAMPLE SIZE:	MEAN:	STD DEV:
Conventional	9	$\bar{x}_{1} \bullet=10.37$	$s_{1}=1.99$
All-Composite	8	$\bar{x}_{2 \bullet}=21.82$	$s_{2}=2.45$
Reversed	6	$\bar{x}_{3 \bullet}=18.02$	$s_{3}=2.52$

This table and all the details regarding the experiment can be found in the following paper:
A. Della Bona, R. van Noort, "Shear vs. Tensile Bond Strength of Resin Composite Bonded to Ceramic", Journal of Dental Research, 74 (1995), 1591-1596.
(a) Formulate this experiment as a 1-Factor ANOVA fixed effects linear model.
(b) Perform the appropriate 1-Factor ANOVA at significance level $\alpha=0.05$ - compute both the F-cutoff and P-value.
(c) Perform the appropriate Tukey-Kramer Complete Pairwise Post-Hoc Comparison.

