
1-FACTOR FIXED EFFECTS UNBALANCED LINEAR MODELS [DEVORE 10.3]

1-FACTOR FIXED EFFECTS UNBALANCED LINEAR (STATISTICAL) MODEL (DEFINITION):

Given a 1-factor unbalanced experiment with I > 2 groups, each of size Ji.

Let Xij ≡ random variable for jth measurement in the ith group.

Then, the fixed effects linear (statistical) model for the experiment is defined as:

Xij = µ+ αA
i + Eij where Eij

iid∼ Normal(0, σ2)

µ ≡ population grand mean of all I population means

αA
i ≡ deviation of ith population mean µi from µ due to Factor A

Eij ≡ rv for error/noise applied to jth measurement in ith group

Fixed effects means all relevant levels of factor A are considered in model.

1-FACTOR LINEAR MODEL (MOTIVATING EXAMPLES):

Xij = µ

µ := 3.2

µ1 = 3.2, µ2 = 3.2, µ3 = 3.2

FACTOR A: MEASUREMENTS:

Level 1 (x1•) x11 = 3.2, x12 = 3.2, x13 = 3.2

Level 2 (x2•) x21 = 3.2, x22 = 3.2, x23 = 3.2, x24 = 3.2

Level 3 (x3•) x31 = 3.2, x32 = 3.2

Xij = µ+ αA
i

µ := 3.2

αA
1 := −5.5, αA

2 := −2.0, αA
3 := 7.5

µ1 = −2.3, µ2 = 1.2, µ3 = 10.7

FACTOR A: MEASUREMENTS:

Level 1 (x1•) x11 = −2.3, x12 = −2.3, x13 = −2.3

Level 2 (x2•) x21 = 1.2, x22 = 1.2, x23 = 1.2, x24 = 1.2

Level 3 (x3•) x31 = 10.7, x32 = 10.7

Xij = µ+ αA
i + Eij

µ := 3.2, αA
1 := −5.5, αA

2 := −2.0, αA
3 := 7.5, Eij

iid∼ Normal(0, σ2 := 3.24)

µ1 = −2.3, µ2 = 1.2, µ3 = 10.7

FACTOR A: MEASUREMENTS:

Level 1 (x1•) x11 = −1.23, x12 = −1.17, x13 = 0.05

Level 2 (x2•) x21 = 0.54, x22 = 1.03, x23 = 0.62, x24 = 1.63

Level 3 (x3•) x31 = 13.64, x32 = 12.30
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1F UNBALANCED LINEAR MODELS (POINT ESTIMATORS) [DEVORE 10.3]

1-FACTOR UNBALANCED LINEAR MODEL (LEAST-SQUARES ESTIMATORS – LSE’s):

Given a 1-factor unbalanced linear model: Xij = µ+αA
i +Eij where Eij

iid∼ Normal(0, σ2) Then:

(a) The least-squares♠♣ estimators†‡ (LSE’s) for the model parameters are:

µ̂ = x••

α̂A
i = xi• − x••

where
x•• ≡ Grand sample mean

xi• ≡ Sample mean of ith group

(b) For these least-squares estimators, it’s required that
∑

i Jiα̂
A
i = 0.

(c) These least-squares estimators are all unbiased.

†A. Dean, D. Voss, D. Draguljić, Design & Analysis of Experiments, 2nd Ed, Springer, 2017. (§3.4.3)

‡D.C. Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.3.3, §3.10.1)

♠A.M. Legendre, Nouvelles Méthodes pour la Détermination des Orbites des Comètes, 1806.

♣Gauss, Theoria Motus Corporum Coelestrium in Sectionibus Conicis Solem Ambientium, 1809.

1-FACTOR UNBALANCED LINEAR MODEL (PREDICTED RESPONSES & RESIDUALS):

Given a 1-factor unbalanced linear model:

Xij = µ+ αA
i + Eij where Eij

iid∼ Normal(0, σ2)

Then the corresponding predicted responses, denoted x̂ij , are:

x̂ij := µ̂+ α̂A
i = x•• + (xi• − x••) = xi•

Moreover, the corresponding residuals, denoted xresij , are:

xresij := xij − x̂ij = xij − xi•

1-FACTOR LINEAR MODEL (GAUSS1-MARKOV2 THEOREM):

Given a 1-factor unbalanced linear model: Xij = µ+ αA
i + Eij

Moreover, suppose the following conditions are all satisfied:

E[Eij ] = 0 (errors are all centered at zero)

V[Eij ] = σ2 (errors all have the same finite variance)

C[Eij , Ei′j′ ] = 0 (errors are uncorrelated when i 6= i′ or j 6= j′)

Then, the least-squares estimators µ̂, α̂A
i are all BLUE’s.

1C.F. Gauss, “Theoria Combinationis Observationum Erroribus Minimis Obnoxiae”, (1823), 1-58.

2A.A. Markov, Calculus of Probabilities, 1st Edition, 1900.
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1-FACTOR UNBALANCED COMPLETELY RANDOMIZED ANOVA

(1F ucrANOVA) [DEVORE 10.3]

• 1F ucrANOVA (MOTIVATION): A 1F ucrANOVA is used if:

– Some experimental units (EU’s) in a balanced exp. malfunction, bite experimenters†, move away or die.

– The levels of Factor A naturally differ in size – e.g. classroom rosters†.

– Some levels of Factor A are prohibitively expensive to carry out‡ (and, hence, have fewer EU’s).

– Some levels of Factor A are far more interesting than others‡ (and, hence, have more EU’s).
†D.C. Howell, Statistical Methods for Psychology, 7th Edition, Cengage, 2010. (§15.2)

‡D.C. Montgomery, Design and Analysis of Experiments, 7th Edition, Wiley, 2009. (§15.2)

• 1F ucrANOVA (FIXED EFFECTS MODEL ASSUMPTIONS):

? (1 Desired Factor) Factor A has I levels.

? (All Factor Levels are Considered) AKA Fixed Effects.

? (Replication in Groups) Each group has Ji > 1 units.

? (Distinct Exp. Units ) All
∑

i Ji units are distinct from each other.

? (Random Assignment across Groups)

? (Independence) All measurements on units are independent.

? (Normality) All groups are approximately normally distributed.

? (Equal Variances) All groups have approximately same variance.

Mnemonic: 1DF AFLaC RiG DEU | RAaG | I.N.EV

• 1F ucrANOVA (SUMS OF SQUARES “PARTITION” VARIATION): (n :=
∑

i Ji)

SStotal︸ ︷︷ ︸
Total V ariation in Experiment

= SSA︸︷︷︸
V ariation due to Factor A

+ SSres︸ ︷︷ ︸
Unexplained V ariation

∑
ij(xij − µ̂)2 =

∑
ij(α̂

A
i )2 +

∑
ij(x

res
ij )2∑

i

∑Ji

j=1(xij − x••)2 =
∑

i

∑Ji

j=1(xi• − x••)2 +
∑

i

∑Ji

j=1(xij − xi•)2

ν︸︷︷︸
Total dof ′s in Experiment

= νA︸︷︷︸
′Between Groups′ dof ′s

+ νres︸︷︷︸
′Within Groups′ dof ′s

ν = n− 1 νA = I − 1 νres = n− I

• 1F ucrANOVA (EXPECTED MEAN SQUARES):

(i) E[MSres] = σ2, (ii) E[MSA] = σ2 +
1

I − 1

∑
i

Ji(α
A
i )2

• 1F ucrANOVA (POINT ESTIMATORS OF σ2):

(i) MSres is always an unbiased point estimator of the population variance: E[MSres] = σ2

(ii) If the status quo prevails, MSA is an unbiased estimator of σ2: H0 is indeed true =⇒ E[MSA] = σ2

(iii) If the status quo fails, MSA tends to overestimate σ2: H0 is indeed false =⇒ E[MSA] > σ2
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1-FACTOR UNBALANCED COMPLETELY RANDOMIZED ANOVA

(1F ucrANOVA) [DEVORE 10.3]

• 1F ucrANOVA (FIXED EFFECTS LINEAR MODEL):

1F ucrANOVA Fixed Effects Linear Model

I ≡ # groups to compare

Ji ≡ # measurements in ith group

Xij ≡ rv for jth measurement taken from ith group

µi ≡ Mean of ith population or true average response from ith group

µ ≡ Common population mean or true average overall response

αAi ≡ Deviation from µ due to ith group

Eij ≡ Deviation from µ due to random error

ASSUMPTIONS: Eij
iid∼ Normal

(
0, σ2

)
Xij = µ+ αAi + Eij where

∑
i Jiα

A
i = 0

HA
0 : All αAi = 0

HA
A : Some αAi 6= 0

• 1F ucrANOVA (PROCEDURE):

1. Determine df’s: n :=
∑
i Ji, νA = I − 1, νres = n− I

2. Compute Group Means (if not provided): xi• := 1
Ji

∑Ji
j=1 xij︸ ︷︷ ︸

Given observations

for i = 1, · · · , I

3. Compute Group Variances (if not provided): s2i := 1
Ji−1

∑Ji
j=1(xij − xi•)2︸ ︷︷ ︸

Given observations

=
√
Ji · σ̂xi•︸ ︷︷ ︸

Given ESE’s

for i = 1, · · · , I

4. Compute Grand Mean: x•• := 1
I

∑
i xi•

5. Compute SSres :=
∑
i

∑Ji
j=1(xresij )2 =

∑
i

∑Ji
j=1(xij − xi•)2 =

∑
i(Ji − 1) · s2i

6. Compute SSA :=
∑
i

∑Ji
j=1(α̂Ai )2 =

∑
i

∑Ji
j=1(xi• − x••)2

7. Compute Mean Squares: MSres :=
SSres
νres

, MSA :=
SSA
νA

8. Compute Test Statistic Value: fA =
MSA

MSres
9. Compute P-value: pA := P(F > fA) ≈ 1− ΦF (fA; νA, νres)

10. Render Decision:
(by software) If pA ≤ α then reject HA

0 in favor of HA
A , else accept HA

0 .

(by hand) If fA ≥ f∗νA,νres;α then reject HA
0 in favor of HA

A , else accept HA
0 .

• 1F ucrANOVA (TABLE):

1F ucrANOVA Table (Significance Level α)

Variation

Source
df

Sum of

Squares

Mean

Square

F Stat

Value
P-value Decision

Factor A νA SSA MSA fA pA Accept/Reject HA
0

Unknown νres SSres MSres

Total ν SStotal
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1F ucrANOVA (TUKEY-KRAMER COMPARISONS) [DEVORE 10.3]

• SIMULTANEOUS Q-CI’s FOR MEAN DIFFERENCES:

Given an unbalanced experiment with I groups each of size Ji such that the 1F ucrANOVA assumptions are satisfied.

Then the approximate simultaneous 100(1− α)% Q-CI’s for all mean differences µi − µj are:

(xi• − xj•)± q∗I,νres;α ·

√
MSres ·

1

2

(
1

Ji
+

1

Jj

)
∀i < j (n :=

∑
i Ji, νres := n− I)

If Q-CI for µi − µj does not contain zero, then µi & µj significantly differ.

• TUKEY-KRAMER COMPLETE PAIRWISE POST-HOC COMPARISON: (Simpler than finding Q-CI’s)

Given an unbalanced experiment with I groups each of size Ji (n :=
∑
i Ji)

where 1F ucrANOVA rejects HA
0 at significance level α and the Ji’s only differ slightly.

Then, to determine which population means significantly differ:

1. Sort the group means in ascending order: x(1)• ≤ x(2)• ≤ · · · ≤ x(I)•

2. Compute significant difference widths w(ij) = q∗I,νres;α ·

√
MSres ·

1

2

(
1

J(i)
+

1

J(j)

)
(νres := n− I)

3. If x(j)• ∈
[
x(i)•, x(i)• + w(ij)

]
, underline x(i)• and x(j)• with new line.

4. Repeat STEP 1 with all sorted mean pairs x(i)•, x(j)• such that i < j.

Interpretation:

– Group means sharing a common underline implies they are not significantly different from one another.

– Group means not sharing a common underline implies they are significantly different from one another.

• 1F ANOVA MODEL CHECKING: STANDARDIZED RESIDUALS:

Given a 1-factor experiment, either balanced or only slightly unbalanced:

Xij = µ+ αAi + Eij

Moreover, suppose 1F bcrANOVA / ucrANOVA was performed accordingly.

Then, the standardized residuals† are defined to be:

zresij :=
xresij√

SSres/(n− 1)

An alternative definition‡ that’s reasonable but not used here is:
xresij√
MSres

†Dean, Voss et al, Design & Analysis of Experiments, 2nd Ed, 2017. (§5.2.1)

‡Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.4.1)
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1F ANOVA MODEL CHECK PLOTS (OUTLIERS)

• GOOD PLOT SUGGESTING NO OUTLIERS ARE PRESENT:

• BAD PLOT SUGGESTING THE PRESENCE OF (POSSIBLE) OUTLIERS:

Measurements between two and three standard deviations are possibly outliers.

Measurements beyond three standard deviations are definitely outliers.

• MITIGATION WHEN OUTLIER(S) ARE PRESENT:

If outlier was due to measurement error, correct it†‡.

Else, it may be due to violation(s) of the ANOVA assumptions†.

Else, the 1-factor linear model may be insufficient†.

“We should be careful not to reject or discard an outlying observation unless we have reasonably non-statistical grounds

for doing so. At worst, you may end up with two analyses; one with the outlier and one without.”‡

†A. Dean, D. Voss, D. Draguljić, Design & Analysis of Experiments, 2nd Ed, 2017. (§5.4)

‡D.C. Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.4.1)
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1F ANOVA MODEL CHECK PLOTS (NORMALITY)

• GOOD PLOT SUGGESTING NORMALITY ASSUMPTION IS SATISFIED:

• BAD PLOT SUGGESTING NORMALITY ASSUMPTION IS VIOLATED:

• MITIGATION WHEN NORMALITY ASSUMPITION IS VIOLATED:

Q: How to perform a 1F ANOVA when the Normality Assumption is violated?

A: Perform a 1F Kruskal-Wallis♠ ANOVA which does not assume normality – to be covered in Ch15.

♠W.H. Kruskal, W.A. Wallis, “Use of Ranks in 1-Criterion Variance Analysis”, J. Amer. Stat. Assoc., 47 (1952), 583-621.
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1F ANOVA MODEL CHECK PLOTS (INDEPENDENCE)

• GOOD PLOT SUGGESTING INDEPENDENCE ASSUMPTION IS SATISFIED:

There’s no discernible pattern.

• BAD PLOTS SUGGESTING INDEPENDENCE ASSUMPTION IS VIOLATED:

There’s a clear pattern in each plot: (left) cycle and (right) fan

• MITIGATION WHEN INDEPENDENCE ASSUMPITION IS VIOLATED:

– If randomization was not used, redo the experiment using randomization‡.

– If randomization was used, then use a more complicated model†:

∗ 2-Factor ANOVA – to be covered in Ch11

∗ Analysis of Covariance (ANCOVA) – beyond scope of this course

†A. Dean, D. Voss, D. Draguljić, Design & Analysis of Experiments, 2nd Ed, Springer, 2017. (§5.5)

‡D.C. Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.4.2)
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1F ANOVA MODEL CHECK PLOTS (EQUI-VARIANCE)

• GOOD PLOT SUGGESTING EQUI-VARIANCE ASSUMPTION IS SATISFIED:

• BAD PLOT SUGGESTING EQUI-VARIANCE ASSUMPTION IS VIOLATED:

• MITIGATION WHEN EQUI-VARIANCE ASSUMPITION IS VIOLATED:

Perform the appropriate variance-stabilizing data transformation†‡♣ from the following:

logX, log(1+X), log(1+minxij+X),
√
X,
√

0.5 +X,
√
X+
√

1 +X, 1/X, 1/
√
X, arcsin(

√
X), 2 arcsin(

√
X ± 1/2m)

If data are counts or Poisson-like, use a square-root transformation†‡♣.

If data are proportions or Binomial-like, use an arcsine transformation†♣.

When in doubt, plot log si vs. log(xi•) to help determine appropriate data transformation†‡.

If data transformations do not seem to help much, a more robust method is necessary♥.

†A. Dean, D. Voss, D. Draguljić, Design & Analysis of Experiments, 2nd Ed, Springer, 2017. (§5.6.2)

‡D.C. Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.4.3)

♣D.C. Howell, Statistical Methods for Psychology, 7th Ed, Cengage, 2010. (§11.9)

♥R.J. Grissom, “Heterogeneity of Variance in Clinical Data”, J. Consulting & Clinical Psychology, 68 (2000), 155-165.
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EX 10.3.1: The lifetimes of three light bulb brands were measured:

BULB BRAND (BULB LIFETIMES in yrs)

Brand 1 (x1•) 9.22, 9.07, 8.95, 8.98, 9.54

Brand 2 (x2•) 8.92, 8.88, 9.10

Brand 3 (x3•) 9.08, 8.99, 9.06, 8.93

(a) Formulate this experiment as a 1-Factor ANOVA fixed effects linear model.

(b) Perform the appropriate 1-Factor ANOVA at significance level α = 0.01 – compute both the F -cutoff and P-value.

(c) Summarize everything in an 1-Factor ANOVA table.
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EX 10.3.2: Dentists use resin composites and ceramic fillings among others for cavities in teeth. The shear bond strengths of

resin composite-ceramic bonds formed from three possible configurations (conventional, all-composite, reversed) were measured

(in MPa) and summarized in the following table:

GROUP: SAMPLE SIZE: MEAN: STD DEV:

Conventional 9 x1• = 10.37 s1 = 1.99

All-Composite 8 x2• = 21.82 s2 = 2.45

Reversed 6 x3• = 18.02 s3 = 2.52

This table and all the details regarding the experiment can be found in the following paper:

A. Della Bona, R. van Noort, “Shear vs. Tensile Bond Strength of Resin Composite Bonded to Ceramic”,

Journal of Dental Research, 74 (1995), 1591-1596.

(a) Formulate this experiment as a 1-Factor ANOVA fixed effects linear model.

(b) Perform the appropriate 1-Factor ANOVA at significance level α = 0.05 – compute both the F -cutoff and P-value.

(c) Perform the appropriate Tukey-Kramer Complete Pairwise Post-Hoc Comparison.
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