1-FACTOR FIXED EFFECTS <u>UNBALANCED</u> LINEAR MODELS [DEVORE 10.3]

1-FACTOR FIXED EFFECTS UNBALANCED LINEAR (STATISTICAL) MODEL (DEFINITION):

Given a 1-factor <u>unbalanced</u> experiment with I > 2 groups, each of size J_i .

Let $X_{ij} \equiv$ random variable for j^{th} measurement in the i^{th} group.

Then, the fixed effects linear (statistical) model for the experiment is defined as:

 $X_{ij} = \mu + \alpha_i^A + E_{ij}$ where $E_{ij} \stackrel{iid}{\sim} \operatorname{Normal}(0, \sigma^2)$

 $\mu \equiv$ population grand mean of all I population means

 $\alpha_i^A \equiv \text{deviation of } i^{th} \text{ population mean } \mu_i \text{ from } \mu \text{ due to Factor A}$

 $E_{ij} \equiv$ rv for error/noise applied to j^{th} measurement in i^{th} group

Fixed effects means <u>all relevant levels</u> of factor A are considered in model.

1-FACTOR LINEAR MODEL (MOTIVATING EXAMPLES):

```
X_{ij} = \mu\mu := 3.2
```

$$\mu_1 = 3.2, \ \mu_2 = 3.2, \ \mu_3 = 3.2$$

FACTOR A:	MEASUREMENTS:					
Level 1 $(x_{1\bullet})$	$x_{11} = 3.2,$	$x_{12} = 3.2,$	$x_{13} = 3.2$			
Level 2 $(x_{2\bullet})$	$x_{21} = 3.2,$	$x_{22} = 3.2,$	$x_{23} = 3.2,$	$x_{24} = 3.2$		
Level 3 $(x_{3\bullet})$	$x_{31} = 3.2,$	$x_{32} = 3.2$				

$$X_{ij} = \mu + \alpha_i^A$$

$$\label{eq:multiplicative} \begin{split} \mu &:= 3.2 \\ \alpha_1^A &:= -5.5, \ \alpha_2^A &:= -2.0, \ \alpha_3^A &:= 7.5 \end{split}$$

$$\mu_1 = -2.3, \ \mu_2 = 1.2, \ \mu_3 = 10.7$$

FACTOR A:	MEASUREMENTS:				
Level 1 $(x_{1\bullet})$	$x_{11} = -2.3,$	$x_{12} = -2.3,$	$x_{13} = -2.3$		
Level 2 $(x_{2\bullet})$	$x_{21} = 1.2,$	$x_{22} = 1.2,$	$x_{23} = 1.2,$	$x_{24} = 1.2$	
Level 3 $(x_{3\bullet})$	$x_{31} = 10.7,$	$x_{32} = 10.7$			

$$X_{ij} = \mu + \alpha_i^A + E_{ij}$$

$$\mu := 3.2, \ \alpha_1^A := -5.5, \ \alpha_2^A := -2.0, \ \alpha_3^A := 7.5, \ E_{ij} \overset{iid}{\sim} \ \text{Normal}(0, \sigma^2 := 3.24)$$

$\mu_1 = -2.3, \ \mu_2 = 1.2, \ \mu_3 = 10.7$

FACTOR A:	MEASUREMENTS:				
Level 1 $(x_{1\bullet})$	$x_{11} = -1.23,$	$x_{12} = -1.17,$	$x_{13} = 0.05$		
Level 2 $(x_{2\bullet})$	$x_{21} = 0.54,$	$x_{22} = 1.03,$	$x_{23} = 0.62,$	$x_{24} = 1.63$	
Level 3 $(x_{3\bullet})$	$x_{31} = 13.64,$	$x_{32} = 12.30$			

©2018 Josh Engwer – Revised September 23, 2019

1F <u>UNBALANCED</u> LINEAR MODELS (POINT ESTIMATORS) [DEVORE 10.3]

1-FACTOR <u>UNBALANCED</u> LINEAR MODEL (LEAST-SQUARES ESTIMATORS – LSE's):

Given a 1-factor <u>unbalanced</u> linear model: $X_{ij} = \mu + \alpha_i^A + E_{ij}$ where $E_{ij} \stackrel{iid}{\sim} \text{Normal}(0, \sigma^2)$ Then:

(a) The least-squares^{\bigstar} estimators^{\dagger ‡} (LSE's) for the model parameters are:

(b) For these least-squares estimators, it's required that $\sum_i J_i \hat{\alpha}_i^A = 0$.

(c) These least-squares estimators are all unbiased.

[†]A. Dean, D. Voss, D. Draguljić, *Design & Analysis of Experiments*, 2nd Ed, Springer, 2017. (§3.4.3)

[‡]D.C. Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.3.3, §3.10.1)

A.M. Legendre, Nouvelles Méthodes pour la Détermination des Orbites des Comètes, 1806.

Gauss, Theoria Motus Corporum Coelestrium in Sectionibus Conicis Solem Ambientium, 1809.

1-FACTOR UNBALANCED LINEAR MODEL (PREDICTED RESPONSES & RESIDUALS):

Given a 1-factor <u>unbalanced</u> linear model:

 $X_{ij} = \mu + \alpha_i^A + E_{ij}$ where $E_{ij} \stackrel{iid}{\sim} \operatorname{Normal}(0, \sigma^2)$

Then the corresponding **predicted responses**, denoted \hat{x}_{ij} , are:

 $\hat{x}_{ij} := \hat{\mu} + \hat{\alpha}_i^A = \overline{x}_{\bullet\bullet} + (\overline{x}_{i\bullet} - \overline{x}_{\bullet\bullet}) = \overline{x}_{i\bullet}$

Moreover, the corresponding **residuals**, denoted x_{ij}^{res} , are:

 $x_{ij}^{res} := x_{ij} - \hat{x}_{ij} = x_{ij} - \overline{x}_{i\bullet}$

1-FACTOR LINEAR MODEL (GAUSS¹-MARKOV² THEOREM):

Given a 1-factor <u>unbalanced</u> linear model: $X_{ij} = \mu + \alpha_i^A + E_{ij}$ Moreover, suppose the following conditions are all satisfied:

$$\begin{split} \mathbb{E}[E_{ij}] &= 0 \quad (\text{errors are all centered at zero}) \\ \mathbb{V}[E_{ij}] &= \sigma^2 \quad (\text{errors all have the same finite variance}) \\ \mathbb{C}[E_{ij}, E_{i'j'}] &= 0 \quad (\text{errors are uncorrelated when } i \neq i' \text{ or } j \neq j') \end{split}$$

Then, the least-squares estimators $\hat{\mu}, \hat{\alpha}_i^A$ are all BLUE's.

¹C.F. Gauss, "Theoria Combinationis Observationum Erroribus Minimis Obnoxiae", (1823), 1-58.

²A.A. Markov, *Calculus of Probabilities*, 1st Edition, 1900.

©2018 Josh Engwer - Revised September 23, 2019

1-FACTOR UNBALANCED COMPLETELY RANDOMIZED ANOVA (1F ucrANOVA) [DEVORE 10.3]

• 1F ucrANOVA (MOTIVATION): A 1F ucrANOVA is used if:

- Some experimental units (EU's) in a <u>balanced</u> exp. malfunction, bite experimenters[†], move away or die.
- The levels of Factor A naturally differ in size e.g. classroom rosters[†].
- Some levels of Factor A are prohibitively expensive to carry out[‡] (and, hence, have fewer EU's).
- Some levels of Factor A are far more interesting than others[‡] (and, hence, have more EU's).
 [†]D.C. Howell, Statistical Methods for Psychology, 7th Edition, Cengage, 2010. (§15.2)
 [‡]D.C. Montgomery, Design and Analysis of Experiments, 7th Edition, Wiley, 2009. (§15.2)

• 1F ucrANOVA (FIXED EFFECTS MODEL ASSUMPTIONS):

- \star (<u>1</u> <u>Desired</u> <u>Factor</u>) Factor A has *I* levels.
- * (<u>All Factor Levels are Considered</u>) AKA Fixed Effects.
- * (**<u>Replication in Groups</u>**) Each group has $J_i > 1$ units.
- * (**<u>D</u>istinct <u>Exp.</u> <u>U</u>nits**) All $\sum_i J_i$ units are distinct from each other.
- \star (<u>R</u>andom <u>A</u>ssignment <u>a</u>cross <u>G</u>roups)
- \star (**Independence**) All measurements on units are independent.
- \star (**Normality**) All groups are approximately normally distributed.
- \star (**<u>E</u>qual <u>V</u>ariances**) All groups have approximately same variance.

Mnemonic: 1DF AFLaC RiG DEU | RAaG | I.N.EV

• 1F ucrANOVA (SUMS OF SQUARES "PARTITION" VARIATION): $(n := \sum_i J_i)$

$\underbrace{SS_{total}}_{Total \ Variation \ in \ Experiment}$	=	$\underbrace{SS_A}_{Variation \ due \ to \ Factor \ A}$	+	$\underbrace{\mathrm{SS}_{res}}_{Unexplained \ Variation}$
$\frac{\sum_{ij} (x_{ij} - \hat{\mu})^2}{\sum_i \sum_{j=1}^{J_i} (x_{ij} - \overline{x}_{\bullet \bullet})^2}$	=	$\sum_{i j \in I_{i}} (\hat{\alpha}_{i}^{A})^{2} \sum_{i \sum_{j=1}^{J_{i}}} (\overline{x}_{i \bullet} - \overline{x}_{\bullet \bullet})^{2}$	+ +	$\frac{\sum_{ij} (x_{ij}^{res})^2}{\sum_i \sum_{j=1}^{J_i} (x_{ij} - \overline{x}_{i\bullet})^2}$
$\underbrace{\nu}_{Total \ dof's \ in \ Experiment}$	=	'Between Groups' dof's	+	'Within Groups' dof's
$\nu = n - 1$		$\nu_A = I - 1$		$\nu_{res} = n - I$

• 1F ucrANOVA (EXPECTED MEAN SQUARES):

(i)
$$\mathbb{E}[\mathrm{MS}_{res}] = \sigma^2$$
, (ii) $\mathbb{E}[\mathrm{MS}_A] = \sigma^2 + \frac{1}{I-1} \sum_i J_i (\alpha_i^A)^2$

• 1F ucrANOVA (POINT ESTIMATORS OF σ^2):

- (i) MS_{res} is always an <u>unbiased</u> point estimator of the population variance: $\mathbb{E}[MS_{res}] = \sigma^2$
- (ii) If the status quo prevails, MS_A is an <u>unbiased</u> estimator of σ^2 : H_0 is indeed true $\implies \mathbb{E}[MS_A] = \sigma^2$
- (iii) If the status quo fails, MS_A tends to <u>overestimate</u> σ^2 : H_0 is indeed false $\implies \mathbb{E}[MS_A] > \sigma^2$

^{©2018} Josh Engwer – Revised September 23, 2019

1-FACTOR UNBALANCED COMPLETELY RANDOMIZED ANOVA (1F ucrANOVA) [DEVORE 10.3]

• 1F ucrANOVA (FIXED EFFECTS LINEAR MODEL):

1F ucrANOVA Fixed Effects Linear Model						
I	\equiv	# groups to compare				
J_i	≡	# measurements in i^{th} group				
X_{ij}	\equiv	rv for j^{th} measurement taken from i^{th} group				
μ_i	$\mu_i \equiv$ Mean of i^{th} population or true average response from i^{th} group					
μ	\equiv	Common population mean or true average overall response				
α_i^A	\equiv	Deviation from μ due to i^{th} group				
E_{ij}	$E_{ij} \equiv$ Deviation from μ due to random error					
	<u>ASSUMPTIONS:</u> $E_{ij} \stackrel{iid}{\sim} \text{Normal}(0, \sigma^2)$					
	$X_{ij} = \mu + \alpha_i^A + E_{ij}$ where $\sum_i J_i \alpha_i^A = 0$					
	$ \begin{array}{ccc} H_0^A: & \mathrm{All} & \alpha_i^A = 0 \\ H_A^A: & \mathrm{Some} & \alpha_i^A \neq 0 \end{array} $					

• 1F ucrANOVA (PROCEDURE):

- 1. Determine df's: $n := \sum_{i} J_i$, $\nu_A = I 1$, $\nu_{res} = n I$
- 2. Compute Group Means (if not provided): $\overline{x}_{i\bullet} := \underbrace{\frac{1}{J_i} \sum_{j=1}^{J_i} x_{ij}}_{\text{Given observations}} \text{ for } i = 1, \cdots, I$ 3. Compute Group Variances (if not provided): $s_i^2 := \underbrace{\frac{1}{J_i 1} \sum_{j=1}^{J_i} (x_{ij} \overline{x}_{i\bullet})^2}_{\text{Given observations}} = \underbrace{\sqrt{J_i} \cdot \widehat{\sigma}_{\overline{x}_{i\bullet}}}_{\text{Given ESE's}} \text{ for } i = 1, \cdots, I$
- 4. Compute Grand Mean: $\overline{x}_{\bullet\bullet} := \frac{1}{I} \sum_{i} \overline{x}_{i\bullet}$
- 5. Compute $SS_{res} := \sum_{i} \sum_{j=1}^{J_i} (x_{ij}^{res})^2 = \sum_{i} \sum_{j=1}^{J_i} (x_{ij} \overline{x}_{i\bullet})^2 = \sum_{i} (J_i 1) \cdot s_i^2$
- 6. Compute SS_A := $\sum_i \sum_{j=1}^{J_i} (\hat{\alpha}_i^A)^2 = \sum_i \sum_{j=1}^{J_i} (\overline{x}_{i\bullet} \overline{x}_{\bullet\bullet})^2$ 7. Compute Mean Squares: $MS_{res} := \frac{SS_{res}}{\nu_{res}}$, $MS_A := \frac{SS_A}{\nu_A}$
- 8. Compute Test Statistic Value: $f_A = \frac{MS_A}{MS_{res}}$
- 9. Compute P-value: $p_A := \mathbb{P}(F > f_A) \approx 1 \Phi_F(f_A; \nu_A, \nu_{res})$
- $\begin{array}{lll} \text{(by software)} & \text{If} & p_A \leq \alpha & \text{then reject } H_0^A \text{ in favor of } H_A^A, \text{else accept } H_0^A. \\ \text{(by hand)} & \text{If} & f_A \geq f_{\nu_A,\nu_{res};\alpha}^* & \text{then reject } H_0^A \text{ in favor of } H_A^A, \text{else accept } H_0^A. \end{array}$ 10. Render Decision:

• 1F ucrANOVA (TABLE):

1F ucrANOVA Table (Significance Level α)						
Variation	df	Sum of	Mean	F Stat	P-value	Decision
Source	ui	Squares	Square	Value	r-value	Decision
Factor A	ν_A	SS_A	MS_A	f_A	p_A	Accept/Reject H_0^A
Unknown	ν_{res}	SS_{res}	MS_{res}			
Total	ν	SS_{total}				

1F ucrANOVA (TUKEY-KRAMER COMPARISONS) [DEVORE 10.3]

• SIMULTANEOUS Q-CI's FOR MEAN DIFFERENCES:

Given an unbalanced experiment with I groups each of size J_i such that the 1F ucrANOVA assumptions are satisfied.

Then the approximate simultaneous $100(1-\alpha)\%$ Q-CI's for all mean differences $\mu_i - \mu_j$ are:

$$(\overline{x}_{i\bullet} - \overline{x}_{j\bullet}) \pm q_{I,\nu_{res};\alpha}^* \cdot \sqrt{\mathrm{MS}_{res} \cdot \frac{1}{2} \left(\frac{1}{J_i} + \frac{1}{J_j}\right)} \qquad \forall i < j \qquad (n := \sum_i J_i, \quad \nu_{res} := n - I)$$

If Q-CI for $\mu_i - \mu_j$ does not contain zero, then $\mu_i \& \mu_j$ significantly differ.

• <u>TUKEY-KRAMER COMPLETE PAIRWISE POST-HOC COMPARISON</u>: (Simpler than finding *Q*-CI's) Given an unbalanced experiment with *I* groups each of size J_i $(n := \sum_i J_i)$ where 1F ucrANOVA rejects H_0^A at significance level α and the J_i 's only differ slightly. Then, to determine which population means significantly differ:

- 1. Sort the group means in <u>ascending</u> order: $\overline{x}_{(1)\bullet} \leq \overline{x}_{(2)\bullet} \leq \cdots \leq \overline{x}_{(I)\bullet}$
- 2. Compute significant difference widths $w_{(ij)} = q_{I,\nu_{res};\alpha}^* \cdot \sqrt{\mathrm{MS}_{res} \cdot \frac{1}{2} \left(\frac{1}{J_{(i)}} + \frac{1}{J_{(j)}}\right)} \qquad (\nu_{res} := n I)$
- 3. If $\overline{x}_{(j)\bullet} \in [\overline{x}_{(i)\bullet}, \overline{x}_{(i)\bullet} + w_{(ij)}]$, underline $\overline{x}_{(i)\bullet}$ and $\overline{x}_{(j)\bullet}$ with new line.
- 4. Repeat STEP 1 with all sorted mean pairs $\overline{x}_{(i)\bullet}, \overline{x}_{(j)\bullet}$ such that i < j.

Interpretation:

- Group means sharing a common underline implies they are not significantly different from one another.
- Group means not sharing a common underline implies they are significantly different from one another.

• 1F ANOVA MODEL CHECKING: STANDARDIZED RESIDUALS:

Given a 1-factor experiment, either balanced or only slightly unbalanced:

$$X_{ij} = \mu + \alpha_i^A + E_{ij}$$

Moreover, suppose 1F bcrANOVA / ucrANOVA was performed accordingly.

Then, the **standardized residuals**^{\dagger} are defined to be:

$$z_{ij}^{res} := \frac{x_{ij}^{res}}{\sqrt{\mathrm{SS}_{res}/(n-1)}}$$

An alternative definition[†] that's reasonable but not used here is: $\frac{x_{ij}^{res}}{\sqrt{MS_{res}}}$

[†]Dean, Voss *et al*, *Design & Analysis of Experiments*, 2nd Ed, 2017. (§5.2.1) [‡]Montgomery, *Design & Analysis of Experiments*, 7th Ed, Wiley, 2009. (§3.4.1)

^{©2018} Josh Engwer - Revised September 23, 2019

1F ANOVA MODEL CHECK PLOTS (OUTLIERS)

• GOOD PLOT SUGGESTING NO OUTLIERS ARE PRESENT:

• BAD PLOT SUGGESTING THE PRESENCE OF (POSSIBLE) OUTLIERS:

Measurements between two and three standard deviations are possibly outliers. Measurements beyond three standard deviations are definitely outliers.

• MITIGATION WHEN OUTLIER(S) ARE PRESENT:

If outlier was due to measurement error, correct it $^{\dagger \ddagger}.$

Else, it may be due to violation(s) of the ANOVA assumptions[†]. Else, the 1-factor linear model may be insufficient[†].

"We should be careful not to reject or discard an outlying observation unless we have reasonably non-statistical grounds for doing so. At worst, you may end up with two analyses; one with the outlier and one without."[‡]

[†]A. Dean, D. Voss, D. Draguljić, *Design & Analysis of Experiments*, 2nd Ed, 2017. (§5.4) [‡]D.C. Montgomery, *Design & Analysis of Experiments*, 7th Ed, Wiley, 2009. (§3.4.1)

©2018 Josh Engwer – Revised September 23, 2019

1F ANOVA MODEL CHECK PLOTS (NORMALITY)

• GOOD PLOT SUGGESTING NORMALITY ASSUMPTION IS SATISFIED:

• BAD PLOT SUGGESTING NORMALITY ASSUMPTION IS VIOLATED:

• MITIGATION WHEN NORMALITY ASSUMPTTION IS VIOLATED:

- Q: How to perform a 1F ANOVA when the Normality Assumption is violated?
- A: Perform a 1F Kruskal-Wallis[♠] ANOVA which does not assume normality to be covered in Ch15.

*W.H. Kruskal, W.A. Wallis, "Use of Ranks in 1-Criterion Variance Analysis", J. Amer. Stat. Assoc., 47 (1952), 583-621.

1F ANOVA MODEL CHECK PLOTS (INDEPENDENCE)

• GOOD PLOT SUGGESTING INDEPENDENCE ASSUMPTION IS SATISFIED:

There's no discernible pattern.

• BAD PLOTS SUGGESTING INDEPENDENCE ASSUMPTION IS VIOLATED:

There's a clear pattern in each plot: (left) cycle and (right) fan

• MITIGATION WHEN INDEPENDENCE ASSUMPTIION IS VIOLATED:

- If randomization was <u>not</u> used, redo the experiment using randomization^{\ddagger}.
- If randomization <u>was</u> used, then use a more complicated model^{\dagger}:
 - $\ast\,$ 2-Factor ANOVA to be covered in Ch11
 - $\ast\,$ Analysis of Covariance (ANCOVA) beyond scope of this course

[†]A. Dean, D. Voss, D. Draguljić, *Design & Analysis of Experiments*, 2nd Ed, Springer, 2017. (§5.5) [‡]D.C. Montgomery, *Design & Analysis of Experiments*, 7th Ed, Wiley, 2009. (§3.4.2)

1F ANOVA MODEL CHECK PLOTS (EQUI-VARIANCE)

• GOOD PLOT SUGGESTING EQUI-VARIANCE ASSUMPTION IS SATISFIED:

• BAD PLOT SUGGESTING EQUI-VARIANCE ASSUMPTION IS VIOLATED:

• MITIGATION WHEN EQUI-VARIANCE ASSUMPTTION IS VIOLATED:

Perform the appropriate variance-stabilizing data transformation^{†‡} from the following:

 $\log X$, $\log(1+X)$, $\log(1+\min x_{ij}+X)$, \sqrt{X} , $\sqrt{0.5+X}$, $\sqrt{X}+\sqrt{1+X}$, 1/X, $1/\sqrt{X}$, $\arcsin(\sqrt{X})$, $2\arcsin(\sqrt{X\pm 1/2m})$

If data are counts or Poisson-like, use a square-root transformation $^{\dagger \ddagger \clubsuit}$.

If data are proportions or Binomial-like, use an arcsine transformation $^{\dagger \clubsuit}$.

When in doubt, plot $\log s_i$ vs. $\log(\overline{x}_{i\bullet})$ to help determine appropriate data transformation^{†‡}.

If data transformations do not seem to help much, a more robust method is necessary $^{\heartsuit}$.

[†]A. Dean, D. Voss, D. Draguljić, *Design & Analysis of Experiments*, 2nd Ed, Springer, 2017. (§5.6.2)

[‡]D.C. Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.4.3)

♣D.C. Howell, *Statistical Methods for Psychology*, 7th Ed, Cengage, 2010. (§11.9)

[°]R.J. Grissom, "Heterogeneity of Variance in Clinical Data", J. Consulting & Clinical Psychology, 68 (2000), 155-165.

©2018 Josh Engwer – Revised September 23, 2019

<u>EX 10.3.1</u> The lifetimes of three light bulb brands were measured:

BULB BRAND	(BULB LIFETIMES in yrs)
Brand 1 $(x_{1\bullet})$	9.22, 9.07, 8.95, 8.98, 9.54
Brand 2 $(x_{2\bullet})$	8.92, 8.88, 9.10
Brand 3 $(x_{3\bullet})$	9.08, 8.99, 9.06, 8.93

(a) Formulate this experiment as a 1-Factor ANOVA fixed effects linear model.

(b) Perform the appropriate 1-Factor ANOVA at significance level $\alpha = 0.01$ – compute both the F-cutoff and P-value.

(c) Summarize everything in an 1-Factor ANOVA table.

EX 10.3.2: Dentists use resin composites and ceramic fillings among others for cavities in teeth. The shear bond strengths of resin composite-ceramic bonds formed from three possible configurations (conventional, all-composite, reversed) were measured (in MPa) and summarized in the following table:

GROUP:	SAMPLE SIZE:	MEAN:	STD DEV:
Conventional	9	$\overline{x}_{1\bullet} = 10.37$	$s_1 = 1.99$
All-Composite	8	$\overline{x}_{2\bullet} = 21.82$	$s_2 = 2.45$
Reversed	6	$\overline{x}_{3\bullet} = 18.02$	$s_3 = 2.52$

This table and all the details regarding the experiment can be found in the following paper:

A. Della Bona, R. van Noort, "Shear vs. Tensile Bond Strength of Resin Composite Bonded to Ceramic", *Journal of Dental Research*, **74** (1995), 1591-1596.

(a) Formulate this experiment as a 1-Factor ANOVA fixed effects linear model.

(b) Perform the appropriate 1-Factor ANOVA at significance level $\alpha = 0.05$ – compute both the *F*-cutoff and P-value.

(c) Perform the appropriate Tukey-Kramer Complete Pairwise Post-Hoc Comparison.