BULB LIFETIME (in years)								
BLOCK B: \rightarrow	Batch 1	Batch 2	Batch 3	Batch 4	Batch 5	TOTAL		
FACTOR A: \downarrow	$(x_{\bullet 1})$	$(x_{\bullet 2})$	$(x_{\bullet 3})$	$(x_{\bullet 4})$	$(x_{\bullet 5})$	$(\sum_j x_{ij})$		
Brand 1 $(x_{1\bullet})$	9.22	9.07	8.95	8.98	9.54	45.76		
Brand 2 $(x_{2\bullet})$	8.92	8.88	9.10	8.71	8.85	44.46		
Brand 3 $(x_{3\bullet})$	9.08	8.99	9.06	8.93	9.02	45.08		
TOTAL $(\sum_i x_{ij})$	27.22	26.94	27.11	26.62	27.41	$\sum_i \sum_j x_{ij} =$ 135.30		

<u>EX 11.1.1:</u> The lifetimes of three light bulb brands were blocked by raw material batch and then measured:

(a) Formulate this experiment as a 2-Factor fixed effects linear model. In this context, what does "fixed effects" assume?

 \equiv Grand average bulb lifetime over all 3 brands and all 5 batches

$$X_{ij} = \mu + \alpha_i^A + \alpha_j^{[B]} + E_{ij} \quad \text{where} \quad \begin{array}{c} \alpha_i^A \\ \alpha_j^{[B]} \\ E_{ij} \end{array}$$

 $= Bulb lifetime deviation from <math>\mu$ due to Brand i= Bulb lifetime deviation from μ due to Batch j

 \equiv Bulb lifetime deviation from μ due to random error/noise

0 0

Here, "fixed effects" assumes that <u>all available</u> bulb brands and batches are considered.

i.e. There is no Brand 4, Brand 5, etc... Similarly, there is no Batch 6, Batch 7, etc...

(b) State the appropriate null hypothesis H_0^A and alternative hypothesis H_A^A .

$$\begin{array}{ll} H_0^A: & \alpha_1^A = \alpha_2^A = \alpha_3^A = 0 \\ H_A^A: & \text{Some } \alpha_i^A \neq 0 \end{array} \quad \text{OR EQUIVALENTLY} \quad \begin{array}{ll} H_0^A: & \text{All } \alpha_i^A = \\ H_A^A: & \text{Some } \alpha_i^A \neq 0 \end{array}$$

(c) Perform a 2-Factor Randomized Complete Block ANOVA (2F rcbANOVA) with ($\alpha = 0.01$) significance level.

- Was the chosen blocking effective? To save time and tedium: $SS_{total} = 0.4946$, $SS_{res} \approx 0.20595$
- 1^{st} , determine relevant counts: $I \equiv (\# \text{ levels of Factor A}) = 3$, $J \equiv (\# \text{ levels of Blocking Factor B}) = 5$
- 2^{nd} , compute degrees of freedom: $\nu_A := I 1 = 2$, $\nu_{[B]} := J 1 = 4$, $\nu_{res} := (I 1)(J 1) = 8$
- 3^{rd} , compute group means: $\overline{x}_{i\bullet} := \frac{1}{J} \sum_j x_{ij}$ $\overline{x}_{\bullet j} := \frac{1}{I} \sum_i x_{ij}$

 $\overline{x}_{1\bullet} = \frac{1}{5}(9.22 + 9.07 + 8.95 + 8.98 + 9.54) = \frac{1}{5} \cdot \mathbf{45.76} = 9.152 \qquad \text{Similarly:} \quad \overline{x}_{2\bullet} = 8.892, \ \overline{x}_{3\bullet} = 9.016$

 $\overline{x}_{\bullet 1} = \frac{1}{3}(9.22 + 8.92 + 9.08) = \frac{1}{3} \cdot \mathbf{27.22} \approx 9.0733, \ \overline{x}_{\bullet 2} = 8.9800, \ \overline{x}_{\bullet 3} \approx 9.0367, \ \overline{x}_{\bullet 4} \approx 8.8733, \ \overline{x}_{\bullet 5} \approx 9.1367, \ \overline{x}_{\bullet 5} \approx 9.$

4th, compute grand mean: $\bar{x}_{\bullet\bullet} := \frac{1}{IJ} \sum_{ij} x_{ij} = \frac{1}{IJ} \sum_{i} \sum_{j} x_{ij} = \frac{1}{3\cdot 5} \cdot \mathbf{135.30} = 9.02$

 5^{th} , compute the two unknown sums of squares: (SS_{total} & SS_{res} are given above.)

$$SS_{A} := \sum_{ij} (\hat{\alpha}_{i}^{A})^{2} = J \cdot \sum_{i} (\overline{x}_{i\bullet} - \overline{x}_{\bullet\bullet})^{2} = 5 \cdot [(9.152 - 9.02)^{2} + (8.892 - 9.02)^{2} + (9.016 - 9.02)^{2}] \approx 0.16912$$

$$SS_{[B]} := \sum_{ij} (\hat{\alpha}_{j}^{[B]})^{2} = I \cdot \sum_{j} (\overline{x}_{\bullet j} - \overline{x}_{\bullet\bullet})^{2} = 3 \cdot \begin{bmatrix} (9.0733 - 9.02)^{2} + (8.98 - 9.02)^{2} + (9.0367 - 9.02)^{2} \\ + (8.8733 - 9.02)^{2} + (9.1367 - 9.02)^{2} \end{bmatrix} \approx 0.11958$$

$$6^{th}, \text{ compute mean squares: } MS_{A} := \frac{SS_{A}}{\nu_{A}} = 0.084560, \quad MS_{[B]} := \frac{SS_{[B]}}{\nu_{[B]}} \approx 0.029895, \quad MS_{res} := \frac{SS_{res}}{\nu_{res}} = 0.025744$$

$$7^{th}, \text{ compute F-test statistic values: } f_{A} := \frac{MS_{A}}{MS_{res}} = \frac{0.084560}{0.025744} \approx 3.285, \quad f_{[B]} := \frac{MS_{[B]}}{MS_{res}} = \frac{0.029895}{0.025744} \approx 1.161$$

$$8^{th}, \text{ lookup F-cutoffs in F table (§9.5): } f_{\nu_{A},\nu_{res};\alpha}^{*} = f_{2,8;0.01}^{*} \stackrel{LOOKUP}{\approx} 8.649, \quad f_{\nu_{[B]},\nu_{res};\alpha}^{*} = f_{4,8;0.01}^{*} \stackrel{LOOKUP}{\approx} 7.006$$

$$9^{th}, \text{ render appropriate decisions:}$$

Since
$$f_A \approx 3.285 < 8.649 \approx f_{\nu_A,\nu_{res};\alpha}^*$$
, $\underline{\text{accept }} H_0^A$, meaning bulb brand has no significant effect on lifetime.
Since $f_{[B]} \approx 1.161 < 7.006 \approx f_{\nu_{[B]},\nu_{res};\alpha}^*$, $\underline{\text{the chosen blocking on bulb batch was not effective}}$.

(d) Compute & interpret the eta-squared and partial eta-squared effect size measures: $\hat{\eta}_A^2, \hat{\eta}_{[B]}^2; \quad \hat{\eta}_{(A)}^2, \hat{\eta}_{([B])}^2$

$$\begin{split} \hat{\eta}_A^2 &\coloneqq \frac{\mathrm{SS}_A}{\mathrm{SS}_A + \mathrm{SS}_{[B]} + \mathrm{SS}_{res}} = \frac{0.16912}{0.16912 + 0.11958 + 0.20595} \approx \boxed{0.342} \implies 34.2\% \text{ of the variation in bulb lifetime is due to bulb brand.} \\ \hat{\eta}_{[B]}^2 &\coloneqq \frac{\mathrm{SS}_{[B]}}{\mathrm{SS}_A + \mathrm{SS}_{[B]} + \mathrm{SS}_{res}} = \frac{0.11958}{0.16912 + 0.11958 + 0.20595} \approx \boxed{0.242} \implies 24.2\% \text{ of the variation in bulb lifetime is due to bulb batch.} \\ \hat{\eta}_{[A]}^2 &\coloneqq \frac{\mathrm{SS}_A}{\mathrm{SS}_A + \mathrm{SS}_{res}} = \frac{0.16912}{0.16912 + 0.20595} \approx \boxed{0.451} \implies 45.1\% \text{ of the variation possibly due bulb brand is truly due to it.} \\ \hat{\eta}_{([B])}^2 &\coloneqq \frac{\mathrm{SS}_{[B]}}{\mathrm{SS}_{[B]} + \mathrm{SS}_{res}} = \frac{0.11958}{0.11958 + 0.20595} \approx \boxed{0.367} \implies 36.7\% \text{ of the variation possibly due bulb batch is truly due to it.} \end{split}$$

O2018 Josh Engwer – Revised October 9, 2019

NUMBER OF CHOCOLATE CANDIES OF A GIVEN COLOR IN A GIVEN BAG								
BLOCK B: \rightarrow	Bag 1	Bag 2	Bag 3	Bag 4	Bag 5	Bag 6	Bag 7	TOTAL
FACTOR A: \downarrow	$(x_{\bullet 1})$	$(x_{\bullet 2})$	$(x_{\bullet 3})$	$(x_{\bullet 4})$	$(x_{\bullet 5})$	$(x_{\bullet 6})$	$(x_{\bullet 7})$	$(\sum_j x_{ij})$
Blue $(x_{1\bullet})$	8	7	5	7	6	8	6	47
Red $(x_{2\bullet})$	2	2	5	3	5	4	5	26
Orange $(x_{3\bullet})$	1	0	0	1	1	2	1	6
Green $(x_{4\bullet})$	0	1	0	2	0	3	2	8
Brown $(x_{5\bullet})$	5	6	6	7	5	7	5	41
Yellow $(x_{6\bullet})$	2	1	3	1	2	3	1	13
TOTAL $(\sum_i x_{ij})$	18	17	19	21	19	27	20	$\sum_{i} \sum_{j} x_{ij} =$ 141

EX 11.1.2: The counts of M&M's[®] peanut chocolate candies in seven equal-size bags are provided in this table[†]:

[†]This table is a simplified and modified version of the table (and experiment) found in:

T. Lin, M.S. Sanders, "A Sweet Way to Learn DoE", Quality Progress, 39 (2006), 88.

(a) Formulate this experiment as a 2-Factor fixed effects linear model.

 $X_{ij} = \mu + \alpha_i^A + \alpha_j^{[B]} + E_{ij} \quad \text{where} \quad \begin{cases} \mu & \equiv & \text{Grand average M\&M candy count over all 6 colors and all 7 bags} \\ \alpha_i^A & \equiv & \text{Candy count deviation from } \mu \text{ due to Color } i \\ \alpha_j^{[B]} & \equiv & \text{Candy count deviation from } \mu \text{ due to Bag } j \\ E_{ij} & \equiv & \text{Candy count deviation from } \mu \text{ due to random error/noise} \end{cases}$

(b) State the appropriate null hypothesis H_0^A and alternative hypothesis H_A^A .

$$\begin{array}{ll} H_0^A: & \alpha_1^A = \alpha_2^A = \alpha_3^A = \alpha_4^A = \alpha_5^A = \alpha_6^A = 0 \\ H_A^A: & \text{Some } \alpha_i^A \neq 0 \end{array} \quad \text{OR EQUIVALENTLY} \qquad \begin{array}{ll} H_0^A: & \text{All } \alpha_i^A = 0 \\ H_A^A: & \text{Some } \alpha_i^A \neq 0 \end{array}$$

(c) Perform a 2-Factor Randomized Complete Block ANOVA (2F rcbANOVA) with ($\alpha = 0.05$) significance level. Was the blocking effective? To save time: $SS_{total} \approx 257.643$, $SS_A \approx 217.357$, $SS_{[B]} \approx 10.810$, $SS_{res} \approx 29.476$ 1^{st} , determine relevant counts: $I \equiv (\#$ levels of Factor A) = 6, $J \equiv (\#$ levels of Blocking Factor B) = 7 2^{nd} , compute degrees of freedom: $\nu_A := I - 1 = 5$, $\nu_{[B]} := J - 1 = 6$, $\nu_{res} := (I - 1)(J - 1) = 30$ 3^{rd} , compute mean squares: $MS_A := \frac{SS_A}{\nu_A} = 43.4714$, $MS_{[B]} := \frac{SS_{[B]}}{\nu_{[B]}} \approx 1.8017$, $MS_{res} := \frac{SS_{res}}{\nu_{res}} \approx 0.9825$ 4^{th} , compute F-test statistic values: $f_A := \frac{MS_A}{MS_{res}} = \frac{43.4714}{0.9825} \approx 44.2457$, $f_{[B]} := \frac{MS_{[B]}}{MS_{res}} = \frac{1.8017}{0.9825} \approx 1.8338$ 5^{th} , lookup F-cutoffs in F table (§9.5): $f^*_{\nu_A,\nu_{res};\alpha} = f^*_{5,30;0.05} \xrightarrow{LOOKUP}{2.534}$, $f^*_{\nu_{[B]},\nu_{res};\alpha} = f^*_{6,30;0.05} \xrightarrow{LOOKUP}{2.421}$ 6^{th} , render appropriate decisions:

- $\begin{array}{rcl} f_A &\approx& 44.2457 > 2.534 &\approx& f^*_{\nu_A,\nu_{res};\alpha}, & \text{so reject } H^A_0, \text{ so at least two candy color counts significantly differ in a bag.} \\ f_{[B]} &\approx& 1.8338 < 2.421 &\approx& f^*_{\nu_{[B]},\nu_{res};\alpha}, & \text{so the chosen blocking on candy bag was barely not effective.} \end{array}$
- (d) Compute & interpret the eta-squared and partial eta-squared effect size measures: $\hat{\eta}_A^2$; $\hat{\eta}_{(A)}^2$

 $\hat{\eta}_A^2 := \frac{\mathrm{SS}_A}{\mathrm{SS}_A + \mathrm{SS}_{[B]} + \mathrm{SS}_{res}} = \frac{217.357}{217.357 + 10.810 + 29.476} \approx \boxed{0.844} \implies 84.4\% \text{ of the variation in candy count is due to candy color.}$ $\hat{\eta}_{(A)}^2 := \frac{\mathrm{SS}_A}{\mathrm{SS}_A + \mathrm{SS}_{res}} = \frac{217.357}{217.357 + 29.476} \approx \boxed{0.881} \implies 88.1\% \text{ of the variation possibly due candy color is truly due to it.}$

(e) Perform the appropriate Tukey Complete Pairwise Post-Hoc Comparison. $w = q_{I,\nu_{res};\alpha}^* \cdot \sqrt{\text{MS}_{res}/J} \approx q_{6,30;0.05}^* \cdot \sqrt{0.9825/7} \overset{LOOKUP}{\approx} \textbf{4.301} \cdot \sqrt{0.9825/7} \approx 1.611 \qquad (\overline{x}_{1\bullet} = 47/7 \approx 6.714)$

<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u></u>	<u>.</u>		$\overline{x}_{(1)\bullet}$	$\overline{x}_{(2)\bullet}$	$\overline{x}_{(3)\bullet}$	$\overline{x}_{(4)\bullet}$	$\overline{x}_{(5)\bullet}$	$\overline{x}_{(6)\bullet}$	(Underline means)
<i>L</i>]•	$\frac{120}{2}$			250 E 0E7	1 OE7	$\stackrel{SORT}{\Longrightarrow}$	\overline{x}_{3ullet}	\overline{x}_{4ullet}	\overline{x}_{6ullet}	$\overline{x}_{2\bullet}$	\overline{x}_{5ullet}	$\overline{x}_{1\bullet}$	within $w \approx 1.611$
0.714	3.714	0.697	1.140	9.697	1.007		0.857	1.143	1.857	3.714	5.857	6.714	of each other.

I	In a typical bag \langle	there are significantly more blue & brown M&M's than red ones.						
		\therefore there are significantly more red M&M's than orange, green & yellow ones.						

©2018 Josh Engwer - Revised October 9, 2019