BULB LIFETIME (in years)						
BLOCK B: \rightarrow FACTOR A:	Batch 1 $\left(x_{\bullet 1}\right)$	Batch 2 $(x \bullet 2)$	Batch 3 $(x \bullet 3)$	Batch 4 $(x \bullet 4)$	Batch 5 $\left(x_{\bullet 5}\right)$	TOTAL $\left(\sum_{j} x_{i j}\right)$
Brand $1\left(x_{1} \bullet\right)$	9.22	9.07	8.95	8.98	9.54	45.76
Brand $2\left(x_{2 \bullet}\right.$)	8.92	8.88	9.10	8.71	8.85	44.46
Brand 3 ($x_{3 \bullet}$)	9.08	8.99	9.06	8.93	9.02	45.08
TOTAL $\left(\sum_{i} x_{i j}\right)$	27.22	26.94	27.11	26.62	27.41	$\sum_{i} \sum_{j} x_{i j}=135.30$

(a) Formulate this experiment as a 2-Factor fixed effects linear model. In this context, what does "fixed effects" assume?

$$
\begin{aligned}
& X_{i j}=\mu+\alpha_{i}^{A}+\alpha_{j}^{[B]}+E_{i j} \text { where } \quad \begin{array}{cl}
\alpha_{i}^{A} & \equiv \text { Bulb lifetime deviation from } \mu \text { due to Brand } i \\
\alpha_{j}^{[B]} & \equiv \text { Bulb lifetime deviation from } \mu \text { due to Batch } j
\end{array} \\
& E_{i j} \equiv \text { Bulb lifetime deviation from } \mu \text { due to random error/noise }
\end{aligned}
$$

Here, "fixed effects" assumes that all available bulb brands and batches are considered.
i.e. There is no Brand 4, Brand 5, etc... Similarly, there is no Batch 6, Batch 7, etc...
(b) State the appropriate null hypothesis H_{0}^{A} and alternative hypothesis H_{A}^{A}.

$$
\begin{array}{rrrrr}
H_{0}^{A}: & \alpha_{1}^{A}=\alpha_{2}^{A}=\alpha_{3}^{A}=0 \\
H_{A}^{A}: & \text { Some } \alpha_{i}^{A} \neq 0 & \text { OR EQUIVALENTLY } & H_{0}^{A}: \quad \text { All } \alpha_{i}^{A}=0 \\
H_{A}^{A}: \quad \text { Some } \alpha_{i}^{A} \neq 0
\end{array}
$$

(c) Perform a 2-Factor Randomized Complete Block ANOVA (2F rcbANOVA) with ($\alpha=0.01$) significance level.

Was the chosen blocking effective? To save time and tedium: $\mathrm{SS}_{\text {total }}=0.4946, \quad \mathrm{SS}_{\text {res }} \approx 0.20595$
$1^{\text {st }}$, determine relevant counts: $\quad I \equiv(\#$ levels of Factor A) $=3, \quad J \equiv(\#$ levels of Blocking Factor B) $=5$
$2^{\text {nd }}$, compute degrees of freedom: $\quad \nu_{A}:=I-1=2, \quad \nu_{[B]}:=J-1=4, \quad \nu_{\text {res }}:=(I-1)(J-1)=8$
$3^{\text {rd }}$, compute group means: $\quad \bar{x}_{\bullet \bullet}:=\frac{1}{J} \sum_{j} x_{i j} \quad \bar{x}_{\bullet j}:=\frac{1}{I} \sum_{i} x_{i j}$
$\bar{x}_{1} \bullet=\frac{1}{5}(9.22+9.07+8.95+8.98+9.54)=\frac{1}{5} \cdot \mathbf{4 5 . 7 6}=9.152 \quad$ Similarly: $\bar{x}_{2} \bullet=8.892, \bar{x}_{3} \bullet=9.016$
$\bar{x}_{\bullet 1}=\frac{1}{3}(9.22+8.92+9.08)=\frac{1}{3} \cdot \mathbf{2 7 . 2 2} \approx 9.0733, \bar{x}_{\bullet 2}=8.9800, \bar{x}_{\bullet 3} \approx 9.0367, \bar{x}_{\bullet 4} \approx 8.8733, \bar{x}_{\bullet 5} \approx 9.1367$
$4^{\text {th }}$, compute grand mean: $\quad \bar{x}_{\bullet \bullet}:=\frac{1}{I J} \sum_{i j} x_{i j}=\frac{1}{I J} \sum_{i} \sum_{j} x_{i j}=\frac{1}{3.5} \cdot \mathbf{1 3 5 . 3 0}=9.02$
$5^{\text {th }}$, compute the two unknown sums of squares: $\left(\mathrm{SS}_{\text {total }} \& \mathrm{SS}_{\text {res }}\right.$ are given above.)

$$
\begin{aligned}
\mathrm{SS}_{A} & :=\sum_{i j}\left(\hat{\alpha}_{i}^{A}\right)^{2}=J \cdot \sum_{i}\left(\bar{x}_{\bullet \bullet}-\bar{x}_{\bullet \bullet}\right)^{2}
\end{aligned}=5 \cdot\left[(9.152-9.02)^{2}+(8.892-9.02)^{2}+(9.016-9.02)^{2}\right] \quad \approx\left[\begin{array}{l}
(9.0733-9.02)^{2}+(8.98-9.02)^{2}+(9.0367-9.02)^{2} \\
+(8.8733-9.02)^{2}+(9.1367-9.02)^{2}
\end{array}\right] \approx 0.169120 .11958
$$

$6^{t h}$, compute mean squares: $\quad \mathrm{MS}_{A}:=\frac{\mathrm{SS}_{A}}{\nu_{A}}=0.084560, \quad \mathrm{MS}_{[B]}:=\frac{\mathrm{SS}_{[B]}}{\nu_{[B]}} \approx 0.029895, \quad \mathrm{MS}_{\text {res }}:=\frac{\mathrm{SS}_{\text {res }}}{\nu_{\text {res }}}=0.025744$
$7^{\text {th }}$, compute F-test statistic values: $\quad f_{A}:=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{\text {res }}}=\frac{0.084560}{0.025744} \approx 3.285, \quad f_{[B]}:=\frac{\mathrm{MS}_{[B]}}{\mathrm{MS}_{r e s}}=\frac{0.029895}{0.025744} \approx 1.161$
$8^{\text {th }}$, lookup F-cutoffs in F table (§9.5): $\quad f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}=f_{2,8 ; 0.01}^{*} \stackrel{\text { LOOKUP }}{\approx} 8.649, \quad f_{\nu_{[B]}, \nu_{r e s} ; \alpha}^{*}=f_{4,8 ; 0.01}^{*} \stackrel{\text { LOOKUP }}{\approx} 7.006$ $9^{t h}$, render appropriate decisions:

Since $f_{A} \approx 3.285<8.649 \approx f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}$,	accept H_{0}^{A}, meaning bulb brand has no significant effect on lifetime.
Since $\quad f_{[B]} \approx 1.161<7.006$	$\approx f_{\nu_{[B]}, \nu_{r e s} ; \alpha}^{*}, \quad$ the chosen blocking on bulb batch was not effective.

(d) Compute \& interpret the eta-squared and partial eta-squared effect size measures: $\quad \hat{\eta}_{A}^{2}, \hat{\eta}_{[B]}^{2} ; \quad \hat{\eta}_{(A)}^{2}, \hat{\eta}_{([B])}^{2}$

$$
\begin{aligned}
\hat{\eta}_{A}^{2}:=\frac{\mathrm{SS}_{A}}{\mathrm{SS}_{A}+\mathrm{SS}_{[B]}+\mathrm{SS}_{\text {res }}}=\frac{0.16912}{0.16912+0.11958+0.20595} \approx 0.342 & \Longrightarrow 34.2 \% \text { of the variation in bulb lifetime is due to bulb brand. } \\
\hat{\eta}_{[B]}^{2}:=\frac{\mathrm{SS}_{[B]}}{\mathrm{SS}_{A}+\mathrm{SS}_{[B]}+\mathrm{SS}_{\text {res }}}=\frac{0.11958}{0.16912+0.11958+0.20595} \approx 0.242 & \Longrightarrow 24.2 \% \text { of the variation in bulb lifetime is due to bulb batch. } \\
\hat{\eta}_{(A)}^{2}:=\frac{\mathrm{SS}_{A}}{\mathrm{SS}_{A}+\mathrm{SS}_{\text {res }}}=\frac{0.16912}{0.16912+0.20595} \approx 0.451 & \Longrightarrow 45.1 \% \text { of the variation possibly due bulb brand is truly due to it. } \\
\hat{\eta}_{([B])}^{2}:=\frac{\mathrm{SS}_{[B]}}{\mathrm{SS}_{[B]}+\mathrm{SS}_{\text {res }}}=\frac{0.11958}{0.11958+0.20595} \approx 0.367 & \Longrightarrow 36.7 \% \text { of the variation possibly due bulb batch is truly due to it. }
\end{aligned}
$$

NUMBER OF CHOCOLATE CANDIES OF A GIVEN COLOR IN A GIVEN BAG								
$\begin{array}{cc} \hline \text { BLOCK B: } & \rightarrow \\ \text { FACTOR A: } & \downarrow \\ \hline \end{array}$	$\begin{gathered} \text { Bag } 1 \\ \left(x_{\bullet 1}\right) \end{gathered}$	$\begin{gathered} \text { Bag } 2 \\ (x \bullet 2) \end{gathered}$	$\begin{gathered} \hline \text { Bag } 3 \\ \left(x_{\bullet}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Bag } 4 \\ (x \bullet 4) \end{gathered}$	$\begin{gathered} \text { Bag } 5 \\ (x \cdot 5) \end{gathered}$	$\begin{gathered} \text { Bag } 6 \\ (x \bullet 6) \end{gathered}$	$\begin{gathered} \text { Bag } 7 \\ \left(x_{\bullet 7}\right) \end{gathered}$	$\begin{aligned} & \text { TOTAL } \\ & \left(\sum_{j} x_{i j}\right) \\ & \hline \end{aligned}$
Blue (x_{1} •)	8	7	5	7	6	8	6	47
Red ($x_{2} \bullet$)	2	2	5	3	5	4	5	26
Orange ($x_{3 \bullet}$)	1	0	0	1	1	2	1	6
Green (x_{4} ॰ $)$	0	1	0	2	0	3	2	8
Brown ($x_{5 \bullet}$)	5	6	6	7	5	7	5	41
Yellow ($x_{6 \bullet}$)	2	1	3	1	2	3	1	13
TOTAL ($\sum_{i} x_{i j}$)	18	17	19	21	19	27	20	$\sum_{i} \sum_{j} x_{i j}=\mathbf{1 4 1}$

\dagger This table is a simplified and modified version of the table (and experiment) found in:
T. Lin, M.S. Sanders, "A Sweet Way to Learn DoE", Quality Progress, 39 (2006), 88.
(a) Formulate this experiment as a 2-Factor fixed effects linear model.

$$
X_{i j}=\mu+\alpha_{i}^{A}+\alpha_{j}^{[B]}+E_{i j} \quad \text { where }
$$

$$
\begin{aligned}
\mu & \equiv \text { Grand average M\&M candy count over all } 6 \text { colors and all } 7 \text { bags } \\
\alpha_{i}^{A} & \equiv \text { Candy count deviation from } \mu \text { due to Color } i \\
\alpha_{j}^{[B]} & \equiv \text { Candy count deviation from } \mu \text { due to Bag } j \\
E_{i j} & \equiv \text { Candy count deviation from } \mu \text { due to random error/noise }
\end{aligned}
$$

(b) State the appropriate null hypothesis H_{0}^{A} and alternative hypothesis H_{A}^{A}.

$$
\begin{array}{rrrr}
H_{0}^{A}: & \alpha_{1}^{A}=\alpha_{2}^{A}=\alpha_{3}^{A}=\alpha_{4}^{A}=\alpha_{5}^{A}=\alpha_{6}^{A}=0 \\
H_{A}^{A}: & \text { Some } \alpha_{i}^{A} \neq 0
\end{array} \quad \text { OR EQUIVALENTLY } \quad H_{0}^{A}: \quad \text { All } \alpha_{i}^{A}=0
$$

(c) Perform a 2-Factor Randomized Complete Block ANOVA (2F rcbANOVA) with ($\alpha=0.05$) significance level.

Was the blocking effective? To save time: $\quad \mathrm{SS}_{\text {total }} \approx 257.643, \quad \mathrm{SS}_{A} \approx 217.357, \quad \mathrm{SS}_{[B]} \approx 10.810, \quad \mathrm{SS}_{\text {res }} \approx 29.476$ $1^{\text {st }}$, determine relevant counts: $I \equiv(\#$ levels of Factor A) $=6, \quad J \equiv(\#$ levels of Blocking Factor B) $=7$ $2^{\text {nd }}$, compute degrees of freedom: $\quad \nu_{A}:=I-1=5, \quad \nu_{[B]}:=J-1=6, \quad \nu_{\text {res }}:=(I-1)(J-1)=30$ $3^{\text {rd }}$, compute mean squares: $\quad \mathrm{MS}_{A}:=\frac{\mathrm{SS}_{A}}{\nu_{A}}=43.4714, \quad \mathrm{MS}_{[B]}:=\frac{\mathrm{SS}_{[B]}}{\nu_{[B]}} \approx 1.8017, \quad \mathrm{MS}_{\text {res }}:=\frac{\mathrm{SS}_{\text {res }}}{\nu_{\text {res }}} \approx 0.9825$ $4^{\text {th }}$, compute F-test statistic values: $\quad f_{A}:=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{\text {res }}}=\frac{43.4714}{0.9825} \approx 44.2457, \quad f_{[B]}:=\frac{\mathrm{MS}_{[B]}}{\mathrm{MS}_{\text {res }}}=\frac{1.8017}{0.9825} \approx 1.8338$ $5^{\text {th }}$, lookup F-cutoffs in F table (§9.5): $f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}=f_{5,30 ; 0.05}^{*} \stackrel{L^{\prime O O K U P}}{\approx} 2.534, \quad f_{\nu_{[B]}, \nu_{r e s} ; \alpha}^{*}=f_{6,30 ; 0.05}^{*} \stackrel{\text { LOOKUP }}{\approx} 2.421$ $6^{t h}$, render appropriate decisions:

$$
\begin{aligned}
f_{A} & \approx 44.2457>2.534 \\
f_{[B]} & \approx 1.8338<2.421 \approx f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}, \quad \underline{\text { so reject }} H_{0}^{A}, \text { so at least two candy color counts significantly differ in a bag. } \\
f_{[B], \nu_{r e s} ; \alpha}^{*}, & \text { so the chosen blocking on candy bag was barely not effective. }
\end{aligned}
$$

(d) Compute \& interpret the eta-squared and partial eta-squared effect size measures: $\hat{\eta}_{A}^{2} ; \hat{\eta}_{(A)}^{2}$

$$
\begin{aligned}
\hat{\eta}_{A}^{2}:=\frac{\mathrm{SS}_{A}}{\mathrm{SS}_{A}+\mathrm{SS}_{[B]}+\mathrm{SS}_{\text {res }}}=\frac{217.357}{217.357+10.810+29.476} \approx 0.844 & \Longrightarrow 84.4 \% \text { of the variation in candy count is due to candy color. } \\
\hat{\eta}_{(A)}^{2}:=\frac{\mathrm{SS}_{A}}{\mathrm{SS}_{A}+\mathrm{SS}_{r e s}}=\frac{217.357}{217.357+29.476} \approx 0.881 & \Longrightarrow 88.1 \% \text { of the variation possibly due candy color is truly due to it. }
\end{aligned}
$$

(e) Perform the appropriate Tukey Complete Pairwise Post-Hoc Comparison.
$w=q_{I, \nu_{r e s} ; \alpha}^{*} \cdot \sqrt{\mathrm{MS}_{r e s} / J} \approx q_{6,30 ; 0.05}^{*} \cdot \sqrt{0.9825 / 7} \stackrel{\text { LOOKUP }}{\approx} 4.301 \cdot \sqrt{0.9825 / 7} \approx 1.611 \quad\left(\bar{x}_{1} \bullet=47 / 7 \approx 6.714\right)$

\therefore In a typical bag... $\left\{\begin{array}{l}\text {...there are significantly more blue \& brown M\&M's than red ones. } \\ \ldots \text {..there are significantly more red M\&M's than orange, green \& yellow ones. }\end{array}\right\}$

