NUISANCE FACTORS (DEF'N): An uninteresting factor that may affect the response is a nuisance factor.

NUISANCE FACTORS (TYPES): The three types of nuisance factors are dealt with via different techniques ${ }^{\ddagger}$:

NUISANCE FACTOR TYPE:	MITIGATION:	COVERED IN THIS COURSE?
 Uncontrollable	 Double-Blinding	Randomization: Yes Double-Blinding: No
 Uncontrollable	Analysis of Covariance (ANCOVA)	No
 Controllable	Randomized Blocking	Yes

NUISANCE FACTORS (EXAMPLES): Alas, undesirable factors may affect an experiment ${ }^{\ddagger}$:

NUISANCE	EXAMPLES:
FACTOR TYPE:	Bias of Designer(s) of Exp.
Unknown \&	Bias of Administrator(s) of Exp.
Uncontrollable	Bias of Human Subject(s) in Exp.
Known \&	Outside Weather (temp, humidity, wind, ...)
Uncontrollable	Ambient Temp. in Large Warehouse
	Life Experience of Human Subjects
	Origin/Purity of Raw Material Batches
Ambient Temp. in Small Room	
Known \&	Accuracy/Precision of Workers
Controllable	Accuracy/Precision of Machines
	Time of Day when Exp. is Conducted
Manufacturer of Comparable Tools	
	Age Group of Human Subjects

"Block what you can, randomize what you cannot." - G.E.P. Box, 1978
${ }^{\ddagger}$ D.C. Montgomery, Design \mathcal{B} Analysis of Experiments, $7^{\text {th }}$ Ed, Wiley, 2009. (§4.1)

- 2F rcbANOVA (RANDOMIZED COMPLETE BLOCK DESIGN): As an example:
- Collect 6 relevant experimental units (EU's):
$\mathrm{EU}_{1}, \mathrm{EU}_{2}, \mathrm{EU}_{3}, \mathrm{EU}_{4}, \mathrm{EU}_{5}, \mathrm{EU}_{6}$
$\mathrm{EU}_{1(3)}, \mathrm{EU}_{2(1)}, \mathrm{EU}_{3(1)}, \mathrm{EU}_{4(2)}, \mathrm{EU}_{5(3)}, \mathrm{EU}_{6(2)}$
- Determine EUs' nuisance levels (which is in parentheses):
- Produce a random shuffle sequence for each nuisance level:
$\operatorname{Lvl} 1:(3 ; 2), \operatorname{Lvl} 2:(4 ; 6), \operatorname{Lvl} 3:(5 ; 1)$
- Use random shuffle sequence to assign the EU's into the 6 groups.
- Measure each EU appropriately. (note the change in notation)

$\begin{array}{cc} \hline \text { BLOCK B: } & \rightarrow \\ \text { FACTOR A: } & \downarrow \end{array}$	Lvl 1	Lvl 2	Lvl 3	$M E \xrightarrow{\text { ASU }}$ RE	$\begin{array}{ll} \text { B: } & \rightarrow \\ \text { A: } & \downarrow \end{array}$	$\begin{aligned} & \text { Lvl } 1 \\ & \left(x_{\bullet 1}\right) \end{aligned}$	$\begin{aligned} & \hline \text { Lvl } 2 \\ & (x \bullet 2) \end{aligned}$	Lvl 3 $(x \cdot 3)$
Level 1	$\mathrm{EU}_{3(1)}$	$\mathrm{EU}_{4(2)}$	$\mathrm{EU}_{5(3)}$		Level $1\left(x_{1} \bullet\right)$	x_{11}	x_{12}	x_{13}
Level 2	$\mathrm{EU}_{2(1)}$	$\mathrm{EU}_{6(2)}$	$\mathrm{EU}_{1(3)}$		Level $2\left(x_{2} \bullet\right)$	x_{21}	x_{22}	x_{23}

- 2F rcbANOVA (FIXED EFFECTS MODEL ASSUMPTIONS):
* ($\underline{1}$ Desired Factor) The sole factor of interest has I levels.
* (1 $\underline{\text { Nuisance }}$ Factor) The sole nuisance factor has J levels.

\star ($\underline{1}$ Measurement per Group) Each of the $I J$ groups has one \exp unit.
\star (́Random $\underline{\text { Assignment within Blocks) such that (s.t.) }}$
* (Nuisance Same in Block) Within block, nearly same nuisance values.

* (Independence) All measurements on units are independent.
* (Normality) All $I J$ groups are approximately normally distributed.
\star (Equal Variances) All $I J$ groups have approximately same variance.
* (Factor and Block are not Interactive)

Mnemonic: 1DF 1NF AFLaC 1MpG|RAwB s.t. NSiB NDaB|I.N.EV FaBanI

- 2F rcbANOVA (SUMS OF SQUARES "PARTITION" VARIATION):

- 2F rcbANOVA (EXPECTED MEAN SQUARES):
(i) $\mathbb{E}\left[\mathrm{MS}_{\text {res }}\right]=\sigma^{2}$
(ii) $\mathbb{E}\left[\mathrm{MS}_{A}\right]=\sigma^{2}+\frac{J}{I-1} \sum_{i}\left(\alpha_{i}^{A}\right)^{2}$
(iii) $\mathbb{E}\left[\mathrm{MS}_{[B]}\right]=\sigma^{2}+\frac{I}{J-1} \sum_{j}\left(\alpha_{j}^{[B]}\right)^{2}$
- 2F rcbANOVA (POINT ESTIMATORS OF σ^{2}):
(i) Regardless of the truthfulness of $H_{0}^{A}, H_{0}^{[B]} \quad \Longrightarrow \quad \mathbb{E}\left[\mathrm{MS}_{\text {res }}\right]=\sigma^{2}$
(ii) $\quad H_{0}^{A}$ is true $\Longrightarrow \mathbb{E}\left[\mathrm{MS}_{A}\right]=\sigma^{2}, \quad H_{0}^{A}$ is false $\quad \Longrightarrow \quad \mathbb{E}\left[\mathrm{MS}_{A}\right]>\sigma^{2}$
- 2F rcbANOVA (FIXED EFFECTS LINEAR MODEL):

2F rcbANOVA Fixed Effects Linear Model	
$\begin{array}{cl} (I, J) & \equiv \text { (\# levels of factor A, \# levels of blocked nuisance factor B) } \\ X_{i j} & \equiv \text { rv for observation at }(i, j) \text {-level of (factor A, block B) } \\ \mu & \equiv \text { Mean avg response over all levels of (factor A, block B) } \\ \left(\alpha_{i}^{A}, \alpha_{j}^{[B]}\right) & \equiv \text { (Effect of } i^{t h} \text {-level factor A, Effect of } j^{t h} \text {-level block B) } \\ E_{i j} & \equiv \text { Deviation from } \mu \text { due to random error } \\ \hline \end{array}$	
ASSUMPTIONS: $E_{i j} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right)$	
$X_{i j}=\mu+\alpha_{i}^{A}+\alpha_{j}^{[B]}+E_{i j} \quad$ where $\quad \sum_{i} \alpha_{i}^{A}=\sum_{j} \alpha_{j}^{[B]}=0$	
$\begin{array}{lcc} H_{0}^{A}: & \text { All } & \alpha_{i}^{A}=0 \\ H_{A}^{A}: & \text { Some } & \alpha_{i}^{A} \neq 0 \end{array}$	

- 2F rcbANOVA (F-TEST PROCEDURE):

1. Determine df's: $\quad \nu_{A}=I-1, \nu_{[B]}=J-1, \nu_{\text {res }}=(I-1)(J-1)$
2. Compute Group Means (if not provided): $\bar{x}_{i \bullet}:=\frac{1}{J} \sum_{j} x_{i j}, \quad \bar{x}_{\bullet j}:=\frac{1}{I} \sum_{i} x_{i j}$
3. Compute Grand Mean: $\bar{x} \bullet \bullet:=\frac{1}{I J} \sum_{i} \sum_{j} x_{i j}$
4. Compute $\mathrm{SS}_{\text {res }}:=\sum_{i j}\left(x_{i j}^{r e s}\right)^{2}=\sum_{i} \sum_{j}\left(x_{i j}-\bar{x}_{\bullet \bullet}-\bar{x}_{\bullet j}+\bar{x}_{\bullet \bullet}\right)^{2}$
5. Compute $\mathrm{SS}_{A}:=\sum_{i j}\left(\hat{\alpha}_{i}^{A}\right)^{2}=\sum_{i} \sum_{j}\left(\bar{x}_{i \bullet}-\bar{x}_{\bullet \bullet}\right)^{2}$
6. Compute $\mathrm{SS}_{[B]}:=\sum_{i j}\left(\hat{\alpha}_{j}^{[B]}\right)^{2}=\sum_{i} \sum_{j}\left(\bar{x}_{\bullet j}-\bar{x}_{\bullet \bullet}\right)^{2}$
(Optional) $\mathrm{SS}_{\text {total }}:=\sum_{i j}\left(x_{i j}-\hat{\mu}\right)^{2}=\sum_{i} \sum_{j}\left(x_{i j}-\bar{x}_{\bullet \bullet}\right)^{2}$
7. Compute Mean Squares: $\mathrm{MS}_{\text {res }}:=\frac{\mathrm{SS}_{\text {res }}}{\nu_{\text {res }}}, \quad \quad \mathrm{MS}_{A}:=\frac{\mathrm{SS}_{A}}{\nu_{A}}, \quad \quad \mathrm{MS}_{[B]}=\frac{\mathrm{SS}_{[B]}}{\nu_{[B]}}$
8. Compute Test Statistic Value(s): $\quad f_{A}=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{r e s}}, \quad f_{[B]}=\frac{\mathrm{MS}_{[B]}}{\mathrm{MS}_{r e s}}$
9. If using software, compute P-value(s): $\left\{\begin{array}{cl}p_{A} & :=\mathbb{P}\left(F>f_{A}\right) \\ p_{[B]} & :=\mathbb{P}\left(F>f_{[B]}\right) \\ \approx 1-\Phi_{F}\left(f_{A} ; \nu_{A}, \nu_{r e s}\right) \\ 1-\Phi_{F}\left(f_{[B]} ; \nu_{[B]}, \nu_{r e s}\right)\end{array}\right.$

- 2F rcbANOVA (SUMMARY TABLE):

2-Factor rcbANOVA Table						(Significance Level α)
Variation	df	Sum of	Mean	F Stat	P-value	Decision
Source		Squares	Square	Value	Pat	
Factor A	ν_{A}	SS_{A}	MS_{A}	f_{A}	p_{A}	Acc/Rej H_{0}^{A}
Blocks B	$\nu_{[B]}$	$\mathrm{SS}_{[B]}$	$\mathrm{MS}_{[B]}$	$f_{[B]}$	$p_{[B]}$	$*$
Error	$\nu_{\text {res }}$	$\mathrm{SS}_{\text {res }}$	$\mathrm{MS}_{\text {res }}$			
Total	ν	$\mathrm{SS}_{\text {total }}$				

${ }^{*}$ Computing $\mathrm{SS}_{[B]}, \mathrm{MS}_{[B]}, f_{[B]}, p_{[B]}$ is optional but recommended as $p_{[B]} \leq \alpha$ or $f_{[B]}>f_{\nu_{[B]}, \nu_{r e s} ; \alpha}^{*}$ implies that the blocking choice results in a significantly smaller $\mathrm{MS}_{\text {res }}$ than using 1 F bcrANOVA, thus the blocked nuisance factor has a significant effect.

On the other hand, if $p_{[B]}>\alpha$ or $f_{[B]}<f_{\nu_{[B]}, \nu_{r e s} ; \alpha}^{*}$, then the particular blocking is not beneficial.
The remedy is to block on a (hopefully) more relevant nuisance factor.

- 2F rcbANOVA (EFFECT SIZE MEASURES \& THEIR INTERPRETATIONS):

YEAR	NAME	EFFECT SIZE VALUE:	INTERPRETATION:
$1925{ }^{\dagger}$	Fisher (Eta-Squared)	$\begin{gathered} \hat{\eta}_{A}^{2}:=\frac{\mathrm{SS}_{A}}{\mathrm{SS}_{A}+\mathrm{SS}_{[B]}+\mathrm{SS}_{r e s}}=0.38 \\ \hat{\eta}_{[B]}^{2}:=\frac{\mathrm{SS}_{[B]}}{\mathrm{SS}_{A}+\mathrm{SS}_{[B]}+\mathrm{SS}_{r e s}}=0.02 \\ \hat{\eta}_{\text {res }}^{2}:=\frac{\mathrm{SS}_{r e s}}{\mathrm{SS}_{A}+\mathrm{SS}_{[B]}+\mathrm{SS}_{r e s}}=0.60 \end{gathered}$	38% of the variation in the reponse is due to Factor A 2% of the variation in the reponse is due to Block B 60% of the variation in the reponse is unexplained with experiment
$1965{ }^{\ddagger}$	Cohen $\left(\text { Partial } \eta^{2}\right)$	$\begin{gathered} \hat{\eta}_{(A)}^{2}:=\frac{\mathrm{SS}_{A}}{\mathrm{SS}_{A}+\mathrm{SS}_{\text {res }}}=0.43 \\ \hat{\eta}_{([B])}^{2}:=\frac{\mathrm{SS}_{[B]}}{\mathrm{SS}_{[B]}+\mathrm{SS}_{\text {res }}}=0.72 \end{gathered}$	43% of the variation possibly due to Factor A is actually due to Factor A 72% of the variation possibly due to Block B is actually due to Block B

${ }^{\dagger}$ R.A. Fisher, Statistical Methods for Reasearch Workers, 1925.
${ }^{\ddagger}$ B.B. Wolman (Ed.), Handbook of Clinical Psychology, 1965. (§5 by J. Cohen)

- 2F rcbANOVA (MORE EFFECT SIZE MEASURES):

YEAR	NAME	MEASURE
1963 ${ }^{\text {¢ }}$	Hays (Omega-Squared)	$\begin{aligned} \hat{\omega}_{A}^{2} & :=\frac{\mathrm{SS}_{A}-\nu_{A} \mathrm{MS}_{\text {res }}}{\mathrm{SS}_{\text {total }}+\mathrm{MS}_{\text {res }}}=\frac{\nu_{A} f_{A}-\nu_{A}}{\nu_{A} f_{A}+\nu_{[B]} f_{[B]}+n} \\ \hat{\omega}_{[B]}^{2} & :=\frac{\mathrm{SS}_{[B]}-\nu_{[B]} \mathrm{MS}_{\text {res }}}{\mathrm{SS}_{\text {total }}+\mathrm{MS}_{\text {res }}}=\frac{\nu_{[B]} f_{[B]}-\nu_{[B]}}{\nu_{A} f_{A}+\nu_{[B]} f_{[B]}+n} \end{aligned}$
1979 ${ }^{\text {¢ }}$	Keren-Lewis (Partial ω^{2})	$\begin{gathered} \hat{\omega}_{(A)}^{2}:=\frac{\mathrm{SS}_{A}-\nu_{A} \mathrm{MS}_{\text {res }}}{\mathrm{SS}_{A}+\left(n-\nu_{A}\right) \mathrm{MS}_{\text {res }}}=\frac{\nu_{A}\left(f_{A}-1\right)}{\nu_{A}\left(f_{A}-1\right)+n} \\ \hat{\omega}_{([B])}^{2}:=\frac{\mathrm{SS}_{[B]}-\nu_{[B]} \mathrm{MS}_{\text {res }}}{\mathrm{SS}_{[B]}+\left(n-\nu_{[B]}\right) \mathrm{MS}_{\text {res }}}=\frac{\nu_{[B]}\left(f_{[B]}-1\right)}{\nu_{[B]}\left(f_{[B]}-1\right)+n} \end{gathered}$

*W.L. Hays, Statistics for Psychologists, 1963.
*G. Keren, C. Lewis, "Partial Omega Squared for ANOVA Designs", Edu. \& Psych. Measurement, 39 (1979), 119-128.

- 2F rcbANOVA (TUKEY POST-HOC COMPARISONS):

Suppose a 2-Factor rcbANOVA results in the rejection of H_{0}^{A}.
Then, at least two of the pop. means significantly differ, but which ones?
Given a 2-factor experiment with I levels of factor A and J levels of blocked nuisance factor B
where 2 F rcbANOVA rejects H_{0}^{A} at significance level α.
Then, to find which levels of factor A significantly differ:

1. Compute the factor A significant difference width: $\quad\left[\nu_{r e s}:=(I-1)(J-1)\right]$

$$
w_{A}=q_{I, \nu_{r e s} ; \alpha}^{*} \cdot \sqrt{\mathrm{MS}_{r e s} / J}
$$

2. Sort the I factor A level means in ascending order:

$$
\bar{x}_{(1) \bullet} \leq \bar{x}_{(2) \bullet} \leq \cdots \leq \bar{x}_{(I) \bullet}
$$

3. For each sorted group mean $\bar{x}_{(i) \bullet}$:

- If $\bar{x}_{(i+1) \bullet} \notin\left[\bar{x}_{(i) \bullet}, \bar{x}_{(i) \bullet}+w_{A}\right]$, repeat STEP 3 with next sorted mean.
- Else, underline $\bar{x}_{(i) \bullet}$ and all larger means within a distance of $w_{A} \mathrm{w} /$ new line.

NOTE: Tukey Post-Hoc Comparisons are used only for factor A, not for block B.

BULB LIFETIME (in years)						
BLOCK B: \rightarrow	Batch 1	Batch 2	Batch 3	Batch 4	Batch 5	
FACTOR A:						
\downarrow	$\left(x_{\bullet 1}\right)$	$\left(x_{\bullet 2}\right)$	$\left(x_{\bullet 3}\right)$	$\left(x_{\bullet 4}\right)$	$\left(x_{\bullet}\right)$	TOTAL
Brand $1\left(x_{1 \bullet}\right)$	9.22	9.07	8.95	8.98	9.54	$\left(\sum_{j} x_{i j}\right)$
Brand $2\left(x_{2 \bullet}\right)$	8.92	8.88	9.10	8.71	8.85	$\mathbf{4 5 . 7 6}$
Brand $3\left(x_{3 \bullet}\right)$	9.08	8.99	9.06	8.93	9.02	$\mathbf{4 4 . 4 6}$
TOTAL $\left(\sum_{i} x_{i j}\right)$	$\mathbf{2 7 . 2 2}$	$\mathbf{2 6 . 9 4}$	$\mathbf{2 7 . 1 1}$	$\mathbf{2 6 . 6 2}$	$\mathbf{2 7 . 4 1}$	$\sum_{i} \sum_{j} x_{i j}=\mathbf{1 3 5 . 3 0}$

(a) Formulate this experiment as a 2-Factor fixed effects linear model. In this context, what does "fixed effects" assume?
(b) State the appropriate null hypothesis H_{0}^{A} and alternative hypothesis H_{A}^{A}.
(c) Perform a 2-Factor Randomized Complete Block ANOVA (2F rcbANOVA) with ($\alpha=0.01$) significance level.

Was the chosen blocking effective? To save time and tedium: $\mathrm{SS}_{\text {total }}=0.4946, \quad \mathrm{SS}_{\text {res }} \approx 0.20595$
(d) Compute \& interpret the eta-squared and partial eta-squared effect size measures: $\quad \hat{\eta}_{A}^{2}, \hat{\eta}_{[B]}^{2} ; \quad \hat{\eta}_{(A)}^{2}, \hat{\eta}_{([B])}^{2}$

NUMBER OF CHOCOLATE CANDIES OF A GIVEN COLOR IN A GIVEN BAG									
$\begin{array}{cc} \text { BLOCK B: } & \rightarrow \\ \text { FACTOR A: } & \downarrow \end{array}$	$\begin{gathered} \text { Bag } 1 \\ \left(x_{\bullet 1}\right) \end{gathered}$	Bag 2 $\left(x_{\bullet}\right)$	Bag 3 ($x \cdot 3$)	Bag 4 $(x \bullet 4)$	Bag 5 $(x \cdot 5)$	$\begin{gathered} \text { Bag } 6 \\ \left(x_{\bullet 6}\right) \end{gathered}$	Bag 7 $(x \bullet 7)$	TOTAL$\left(\sum_{j} x_{i j}\right)$	
Blue ($x_{1 \bullet}$)	8	7	5	7	6	8	6	47	
$\operatorname{Red}\left(x_{2} \bullet\right.$)	2	2	5	3	5	4	5	26	
Orange ($x_{3} \bullet$)	1	0	0	1	1	2	1	6	
Green ($x_{4} \bullet$)	0	1	0	2	0	3	2	8	
Brown ($x_{5} \bullet$)	5	6	6	7	5	7	5	41	
Yellow ($x_{6 \bullet}$)	2	1	3	1	2	3	1	13	
TOTAL $\left(\sum_{i} x_{i j}\right)$	18	17	19	21	19	27	20	$\sum_{i} \sum_{j} x_{i j}=$	141

\dagger This table is a simplified and modified version of the table (and experiment) found in:
T. Lin, M.S. Sanders, "A Sweet Way to Learn DoE", Quality Progress, 39 (2006), 88.
(a) Formulate this experiment as a 2-Factor fixed effects linear model.
(b) State the appropriate null hypothesis H_{0}^{A} and alternative hypothesis H_{A}^{A}.
(c) Perform a 2-Factor Randomized Complete Block ANOVA (2F rcbANOVA) with ($\alpha=0.05$) significance level. Was the blocking effective? To save time: $\quad \mathrm{SS}_{\text {total }} \approx 257.643, \quad \mathrm{SS}_{A} \approx 217.357, \quad \mathrm{SS}_{[B]} \approx 10.810, \quad \mathrm{SS}_{\text {res }} \approx 29.476$
(d) Compute \& interpret the eta-squared and partial eta-squared effect size measures: $\quad \hat{\eta}_{A}^{2} ; \quad \hat{\eta}_{(A)}^{2}$
(e) Perform the appropriate Tukey Complete Pairwise Post-Hoc Comparison.

