NUISANCE FACTORS [DEVORE 11.1]

NUISANCE FACTORS (DEF'N): An uninteresting factor that may affect the response is a nuisance factor.

NUISANCE	MITIC ATION.	COVERED IN THIS COURSE?		
FACTOR TYPE:	MITIGATION:			
Unknown &	Randomization &	Randomization: Yes		
Uncontrollable	Double-Blinding	Double-Blinding: N		
Known &	Analysis of Covariance	N		
Uncontrollable	(ANCOVA)	INO		
Known &	Randomized	Yes		
Controllable	Blocking			

NUISANCE FACTORS (TYPES): The three types of nuisance factors are dealt with via different techniques[‡]:

NUISANCE FACTORS (EXAMPLES): Alas, undesirable factors may affect an experiment^{\ddagger}:

NUISANCE FACTOR TYPE:	EXAMPLES:				
I Imlan oran Pr	Bias of Designer(s) of Exp.				
	Bias of Administrator(s) of Exp.				
Uncontronable	Bias of Human Subject(s) in Exp.				
Known fr	Outside Weather (temp, humidity, wind,)				
Uncontrollable	Ambient Temp. in Large Warehouse				
Uncontronable	Life Experience of Human Subjects				
	Origin/Purity of Raw Material Batches				
	Ambient Temp. in Small Room				
Known fr	Accuracy/Precision of Workers				
	Accuracy/Precision of Machines				
Controllable	Time of Day when Exp. is Conducted				
	Manufacturer of Comparable Tools				
	Age Group of Human Subjects				

"Block what you can, randomize what you cannot." – G.E.P. Box, 1978 [‡]D.C. Montgomery, *Design & Analysis of Experiments*, 7th Ed, Wiley, 2009. (§4.1)

©2018 Josh Engwer – Revised October 9, 2019

2-FACTOR RANDOMIZED COMPLETE BLOCK ANOVA (2F rcbANOVA) [DEVORE 11.1]

• 2F rcbANOVA (RANDOMIZED COMPLETE BLOCK DESIGN): As an example:

- Collect 6 relevant experimental units (EU's):

$\mathrm{EU}_1, \mathrm{EU}_2, \mathrm{EU}_3, \mathrm{EU}_4, \mathrm{EU}_5, \mathrm{EU}_6$

 $EU_{1(3)}, EU_{2(1)}, EU_{3(1)}, EU_{4(2)}, EU_{5(3)}, EU_{6(2)}$

Lvl 1: (3; 2), Lvl 2: (4; 6), Lvl 3: (5; 1)

- Determine EUs' nuisance levels (which is in parentheses):
- Produce a random shuffle sequence for each nuisance level:
- $-\,$ Use random shuffle sequence to assign the EU's into the 6 groups.
- Measure each EU appropriately. (note the change in notation)

BLOCK B:	\rightarrow	Lyl 1	Lyl 9	Lyl 3		B:	\rightarrow	Lvl 1	Lvl 2	Lvl 3
FACTOR A:	\downarrow	LVII	1111 2	1110	MEASURE	A :	\downarrow	$(x_{\bullet 1})$	$(x_{\bullet 2})$	$(x_{\bullet 3})$
Level 1		$EU_{3(1)}$	$EU_{4(2)}$	$EU_{5(3)}$		Level 1	$(x_{1\bullet})$	x_{11}	x_{12}	x_{13}
Level 2		$EU_{2(1)}$	$EU_{6(2)}$	$EU_{1(3)}$		Level 2	$(x_{2\bullet})$	x_{21}	x_{22}	x_{23}

• 2F rcbANOVA (FIXED EFFECTS MODEL ASSUMPTIONS):

- * (<u>1</u> <u>D</u>esired <u>Factor</u>) The sole factor of interest has I levels.
- * (<u>1</u> <u>N</u>uisance <u>Factor</u>) The sole nuisance factor has J levels.
- $\star~(\underline{\mathbf{A}} \mathbf{ll}~\underline{\mathbf{F}} \mathbf{actor}~\underline{\mathbf{L}} \mathbf{evels}~\underline{\mathbf{a}} \mathbf{re}~\underline{\mathbf{C}} \mathbf{onsidered})$ AKA Fixed Effects.
- * (<u>1</u> <u>Measurement per Group</u>) Each of the IJ groups has one exp unit.
- $\star (\underline{\mathbf{R}} \mathbf{andom} \ \underline{\mathbf{A}} \mathbf{ssignment} \ \underline{\mathbf{w}} \mathbf{ithin} \ \underline{\mathbf{B}} \mathbf{locks}) \quad \text{such that} \quad (s.t.)$
- \star (<u>Nuisance Same in Block</u>) Within block, nearly same nuisance values.
- * (<u>Nuisance Differs across Blocks</u>) Blocks differ by nuisance value.
- * (**Independence**) All measurements on units are independent.
- \star (**<u>Normality</u>**) All *IJ* groups are approximately normally distributed.
- \star (**Equal Variances**) All *IJ* groups have approximately same variance.
- $\star \ (\underline{\mathbf{F}} \underline{\mathbf{actor}} \ \underline{\mathbf{a}} \underline{\mathbf{nd}} \ \underline{\mathbf{B}} \underline{\mathbf{lock}} \ \underline{\mathbf{a}} \underline{\mathbf{re}} \ \underline{\mathbf{n}} \underline{\mathbf{ot}} \ \underline{\mathbf{Interactive}})$

Mnemonic: 1DF 1NF AFLaC 1MpG | RAwB s.t. NSiB NDaB | I.N.EV FaBanI

• 2F rcbANOVA (SUMS OF SQUARES "PARTITION" VARIATION):

$\underbrace{ \underbrace{ SS}_{total} }_{ in \ Experiment}$	=	$\underbrace{SS_A}_{\substack{Variation \\ to \ Factor \ A}}$	+	$\underbrace{ \substack{ \mathrm{SS}_{[B]} \\ Variation \ due \\ to \ Blocks \ B } }_{Variation \ due}$	+	$\underbrace{SS_{res}}_{Unexplained}_{Variation}$
$\sum_{ij} (x_{ij} - \hat{\mu})^2$	=	$\sum_{ij} (\hat{\alpha}_i^A)^2$	+	$\sum\limits_{ij} \left(\hat{\alpha}_{j}^{[B]} \right)^{2}$	+	$\sum_{ij} (x^{res}_{ij})^2$
$\underbrace{\nu}_{Total\ dof's\ in}_{Experiment}$	=	$\underbrace{\frac{\nu_A}{Factor}}_{factor} A$	+	$\underbrace{\nu_{[B]}}_{Blocks \ B}_{dof's}$	+	'Within Blocks' dof's
$\nu = IJ -$	1, 1	$\nu_A = I - 1, \nu_{\rm I}$	$_{B1} =$	$J-1, \nu_{res} =$	(I -	(-1)(J-1)

• 2F rcbANOVA (EXPECTED MEAN SQUARES):

(i)
$$\mathbb{E}[\mathrm{MS}_{res}] = \sigma^2$$
 (ii) $\mathbb{E}[\mathrm{MS}_A] = \sigma^2 + \frac{J}{I-1} \sum_i (\alpha_i^A)^2$ (iii) $\mathbb{E}[\mathrm{MS}_{[B]}] = \sigma^2 + \frac{I}{J-1} \sum_j \left(\alpha_j^{[B]}\right)^2$

• 2F rcbANOVA (POINT ESTIMATORS OF σ^2):

- (i) Regardless of the truthfulness of $H_0^A, H_0^{[B]} \implies \mathbb{E}[MS_{res}] = \sigma^2$
- (*ii*) H_0^A is true $\implies \mathbb{E}[MS_A] = \sigma^2, \quad H_0^A$ is false $\implies \mathbb{E}[MS_A] > \sigma^2$

^{©2018} Josh Engwer – Revised October 9, 2019

2-FACTOR RANDOMIZED COMPLETE BLOCK ANOVA (2F rcbANOVA) [DEVORE 11.1]

• 2F rcbANOVA (FIXED EFFECTS LINEAR MODEL):

2F rcbANOVA Fixed Effects Linear Model							
(I,J)	\equiv (# levels of factor A, # levels of blocked nuisance factor B)						
X_{ij}	\equiv rv for observation at (i, j) -level of (factor A, block B)						
μ	μ \equiv Mean avg response over all levels of (factor A, block B)						
$(\alpha_i^A, \alpha_j^{[B]})$	$(\alpha_i^A, \alpha_j^{[B]}) \equiv (\text{Effect of } i^{th}\text{-level factor A}, \text{ Effect of } j^{th}\text{-level block B})$						
E_{ij}	\equiv Deviation from μ due to random error						
	$\underline{\text{ASSUMPTIONS:}} E_{ij} \stackrel{iid}{\sim} \text{Normal}\left(0, \sigma^2\right)$						
$X_{ij} = \mu + \alpha_i^A + \alpha_j^{[B]} + E_{ij} \text{where} \sum_i \alpha_i^A = \sum_j \alpha_j^{[B]} = 0$							
$\hline \qquad \qquad H_0^A: \text{All} \alpha_i^A = 0$							
	H_A^A : Some $\alpha_i^A \neq 0$						

• 2F rcbANOVA (F-TEST PROCEDURE):

- 1. Determine df's: $\nu_A = I 1$, $\nu_{[B]} = J 1$, $\nu_{res} = (I 1)(J 1)$
- 2. Compute Group Means (if not provided): $\overline{x}_{i\bullet} := \frac{1}{J} \sum_{j} x_{ij}, \quad \overline{x}_{\bullet j} := \frac{1}{J} \sum_{i} x_{ij}$
- 3. Compute Grand Mean: $\overline{x}_{\bullet\bullet} := \frac{1}{IJ} \sum_{i} \sum_{j} x_{ij}$
- 4. Compute $SS_{res} := \sum_{ij} (x_{ij}^{res})^2 = \sum_i \sum_j (x_{ij} \overline{x}_{i\bullet} \overline{x}_{\bullet j} + \overline{x}_{\bullet \bullet})^2$
- 5. Compute SS_A := $\sum_{ij} (\hat{\alpha}_i^A)^2 = \sum_i \sum_j (\overline{x}_{i\bullet} \overline{x}_{\bullet\bullet})^2$
- 6. Compute $SS_{[B]} := \sum_{ij} (\hat{\alpha}_j^{[B]})^2 = \sum_i \sum_j (\overline{x}_{\bullet j} \overline{x}_{\bullet \bullet})^2$

(Optional) SS_{total} := $\sum_{ij} (x_{ij} - \hat{\mu})^2 = \sum_i \sum_j (x_{ij} - \overline{x}_{\bullet \bullet})^2$

 $\begin{array}{ll} \text{7. Compute Mean Squares: } \mathrm{MS}_{res} \coloneqq \frac{\mathrm{SS}_{res}}{\nu_{res}}, & \mathrm{MS}_A \coloneqq \frac{\mathrm{SS}_A}{\nu_A}, & \mathrm{MS}_{[B]} = \frac{\mathrm{SS}_{[B]}}{\nu_{[B]}} \\ \text{8. Compute Test Statistic Value(s): } f_A = \frac{\mathrm{MS}_A}{\mathrm{MS}_{res}}, & f_{[B]} = \frac{\mathrm{MS}_{[B]}}{\mathrm{MS}_{res}} \\ \text{9. If using software, compute P-value(s): } \begin{cases} p_A & \coloneqq \mathbb{P}(F > f_A) \approx 1 - \Phi_F(f_A; \nu_A, \nu_{res}) \\ p_{[B]} & \coloneqq \mathbb{P}(F > f_{[B]}) \approx 1 - \Phi_F(f_{[B]}; \nu_{[B]}, \nu_{res}) \end{cases} \\ \text{10. Render Decision(s): } \begin{cases} \mathrm{If} & p_A \leq \alpha \text{ or } f_A > f_{\nu_A, \nu_{res}; \alpha} \\ \mathrm{If} & p_{[B]} \leq \alpha \text{ or } f_{[B]} > f_{\nu_{[B]}, \nu_{res}; \alpha} \end{cases} \\ \text{then the blocking reduced MS_{res} vs. 1F ANOVA. \end{cases} \end{array}$

• 2F rcbANOVA (SUMMARY TABLE):

	2-Factor rcbANOVA Table (Significance Level α)									
Variation	đf	Sum of Mean F Stat								
Source	ui	Squares	Square	Value	r-value	Decision				
Factor A	ν_A	SS_A	MS_A	f_A	p_A	Acc/Rej H_0^A				
Blocks B	$\nu_{[B]}$	$SS_{[B]}$	$MS_{[B]}$	$f_{[B]}$	$p_{[B]}$	*				
Error	ν_{res}	SS_{res}	MS_{res}							
Total	ν	SS_{total}								

*Computing $SS_{[B]}, MS_{[B]}, f_{[B]}, p_{[B]}$ is optional but recommended as $p_{[B]} \leq \alpha$ or $f_{[B]} > f^*_{\nu_{[B]}, \nu_{res};\alpha}$ implies that the blocking choice results in a significantly smaller MS_{res} than using 1F bcrANOVA, thus the blocked nuisance factor has a significant effect.

On the other hand, if $p_{[B]} > \alpha$ or $f_{[B]} < f^*_{\nu_{[B]},\nu_{res};\alpha}$, then the particular blocking is not beneficial. The remedy is to block on a (hopefully) more relevant nuisance factor.

©2018 Josh Engwer - Revised October 9, 2019

2F rcbANOVA (EFFECT SIZES & POST-HOC TESTS) [DEVORE 11.1]

• 2F rcbANOVA (EFFECT SIZE MEASURES & THEIR INTERPRETATIONS):

YEAR	NAME	EFFECT SIZE VALUE:	INTERPRETATION:
		$\hat{\eta}_A^2 := \frac{\mathrm{SS}_A}{\mathrm{SS}_A + \mathrm{SS}_{[B]} + \mathrm{SS}_{res}} = 0.38$	38% of the variation in the reponse is due to Factor A
1925^{\dagger}	Fisher	$\hat{\eta}^2_{[B]}$:= $\frac{\mathrm{SS}_{[B]}}{\mathrm{SS}_A + \mathrm{SS}_{[B]} + \mathrm{SS}_{res}} = 0.02$	2% of the variation in the reponse is due to Block B
(Eta-Squared		$\hat{\eta}_{res}^2 := \frac{\mathrm{SS}_{res}}{\mathrm{SS}_A + \mathrm{SS}_{[B]} + \mathrm{SS}_{res}} = 0.60$	60% of the variation in the reponse is unexplained with experiment
1965 [‡]	Cohen	$\hat{\eta}^2_{(A)} := \frac{\mathrm{SS}_A}{\mathrm{SS}_A + \mathrm{SS}_{res}} = 0.43$	43% of the variation possibly due to Factor A is actually due to Factor A
1000	(Partial η^2)	$\hat{\eta}^2_{([B])} := \frac{\mathrm{SS}_{[B]}}{\mathrm{SS}_{[B]} + \mathrm{SS}_{res}} = 0.72$	72% of the variation possibly due to Block B is actually due to Block B

 $\hat{\eta}_A^2 + \hat{\eta}_{[B]}^2 + \hat{\eta}_{res}^2 = 1$ but $\hat{\eta}_{(A)}^2 + \hat{\eta}_{([B])}^2 > 1$

 $^{\dagger}\mathrm{R.A.}$ Fisher, Statistical Methods for Reasearch Workers, 1925.

[‡]B.B. Wolman (Ed.), Handbook of Clinical Psychology, 1965. (§5 by J. Cohen)

• 2F rcbANOVA (MORE EFFECT SIZE MEASURES):

YEAR	NAME	MEASURE		
1963	Hays	$\hat{\omega}_A^2 := \frac{\mathrm{SS}_A - \nu_A \mathrm{MS}_{res}}{\mathrm{SS}_{total} + \mathrm{MS}_{res}} = \frac{\nu_A f_A - \nu_A}{\nu_A f_A + \nu_{[B]} f_{[B]} + n}$		
1305	(Omega-Squared)	$\hat{\omega}_{[B]}^2 := \frac{\mathrm{SS}_{[B]} - \nu_{[B]} \mathrm{MS}_{res}}{\mathrm{SS}_{total} + \mathrm{MS}_{res}} = \frac{\nu_{[B]} f_{[B]} - \nu_{[B]}}{\nu_A f_A + \nu_{[B]} f_{[B]} + n}$		
1070	Keren-Lewis	$\hat{\omega}_{(A)}^2 := \frac{\mathrm{SS}_A - \nu_A \mathrm{MS}_{res}}{\mathrm{SS}_A + (n - \nu_A) \mathrm{MS}_{res}} = \frac{\nu_A (f_A - 1)}{\nu_A (f_A - 1) + n}$		
1979	(Partial ω^2)	$ \hat{\omega}^{2}_{([B])} := \frac{\mathrm{SS}_{[B]} - \nu_{[B]} \mathrm{MS}_{res}}{\mathrm{SS}_{[B]} + (n - \nu_{[B]}) \mathrm{MS}_{res}} = \frac{\nu_{[B]}(f_{[B]} - 1)}{\nu_{[B]}(f_{[B]} - 1) + n} $		
	•	· · · · · · · · · · · · · · · · · · ·		

 $n := IJ = (1 + \nu_A)(1 + \nu_{[B]})$

♦W.L. Hays, Statistics for Psychologists, 1963.

G. Keren, C. Lewis, "Partial Omega Squared for ANOVA Designs", Edu. & Psych. Measurement, 39 (1979), 119-128.

• 2F rcbANOVA (TUKEY POST-HOC COMPARISONS):

Suppose a 2-Factor rcbANOVA results in the rejection of H_0^A .

Then, at least two of the pop. means significantly differ, but which ones?

Given a 2-factor experiment with I levels of factor A and J levels of blocked nuisance factor B

where 2F rcbANOVA rejects H_0^A at significance level α .

Then, to find which levels of factor A significantly differ:

1. Compute the factor A significant difference width: $[\nu_{res} := (I-1)(J-1)]$

$$w_A = q_{I,\nu_{res};\alpha}^* \cdot \sqrt{\mathrm{MS}_{res}/J}$$

2. Sort the I factor A level means in ascending order:

$$\overline{x}_{(1)\bullet} \leq \overline{x}_{(2)\bullet} \leq \dots \leq \overline{x}_{(I)\bullet}$$

3. For each sorted group mean $\overline{x}_{(i)\bullet}$:

- If $\overline{x}_{(i+1)\bullet} \notin [\overline{x}_{(i)\bullet}, \overline{x}_{(i)\bullet} + w_A]$, repeat STEP 3 with next sorted mean.

- Else, underline $\overline{x}_{(i)\bullet}$ and all larger means within a distance of w_A w/ new line.

NOTE: Tukey Post-Hoc Comparisons are used only for factor A, not for block B.

BULB LIFETIME (in years)										
BLOCK B: \rightarrow	Batch 1	Batch 2	Batch 3	Batch 4	Batch 5	TOTAL				
FACTOR A: \downarrow	$(x_{\bullet 1})$	$(x_{\bullet 2})$	$(x_{\bullet 3})$	$(x_{\bullet 4})$	$(x_{\bullet 5})$	$(\sum_j x_{ij})$				
Brand 1 $(x_{1\bullet})$	9.22	9.07	8.95	8.98	9.54	45.76				
Brand 2 $(x_{2\bullet})$	8.92	8.88	9.10	8.71	8.85	44.46				
Brand 3 $(x_{3\bullet})$	9.08	8.99	9.06	8.93	9.02	45.08				
TOTAL $(\sum_i x_{ij})$	27.22	26.94	27.11	26.62	27.41	$\sum_{i} \sum_{j} x_{ij} = $ 135.30				

EX 11.1.1: The lifetimes of three light bulb brands were blocked by raw material batch and then measured:

(a) Formulate this experiment as a 2-Factor fixed effects linear model. In this context, what does "fixed effects" assume?

- (b) State the appropriate null hypothesis H_0^A and alternative hypothesis H_A^A .
- (c) Perform a 2-Factor Randomized Complete Block ANOVA (2F rcbANOVA) with ($\alpha = 0.01$) significance level. Was the chosen blocking effective? To save time and tedium: $SS_{total} = 0.4946$, $SS_{res} \approx 0.20595$

(d) Compute & interpret the eta-squared and partial eta-squared effect size measures: $\hat{\eta}_A^2, \hat{\eta}_{[B]}^2; \hat{\eta}_{(A)}^2, \hat{\eta}_{([B])}^2$

EX 11.1.2: The counts of M&M's [®]	peanut chocolate candies in seven	equal-size bags are	provided in this table [†] :
---	-----------------------------------	---------------------	---------------------------------------

NUMBER OF CHOCOLATE CANDIES OF A GIVEN COLOR IN A GIVEN BAG								
$\blacksquare \textbf{BLOCK B:} \rightarrow $	Bag 1	Bag 2	Bag 3	Bag 4	Bag 5	Bag 6	Bag 7	TOTAL
FACTOR A: \downarrow	$(x_{\bullet 1})$	$(x_{\bullet 2})$	$(x_{\bullet 3})$	$(x_{\bullet 4})$	$(x_{\bullet 5})$	$(x_{\bullet 6})$	$(x_{\bullet 7})$	$(\sum_j x_{ij})$
Blue $(x_{1\bullet})$	8	7	5	7	6	8	6	47
Red $(x_{2\bullet})$	2	2	5	3	5	4	5	26
Orange $(x_{3\bullet})$	1	0	0	1	1	2	1	6
Green $(x_{4\bullet})$	0	1	0	2	0	3	2	8
Brown $(x_{5\bullet})$	5	6	6	7	5	7	5	41
Yellow $(x_{6\bullet})$	2	1	3	1	2	3	1	13
TOTAL $(\sum_i x_{ij})$	18	17	19	21	19	27	20	$\sum_i \sum_j x_{ij} =$ 141

†This table is a simplified and modified version of the table (and experiment) found in:

T. Lin, M.S. Sanders, "A Sweet Way to Learn DoE", Quality Progress, 39 (2006), 88.

(a) Formulate this experiment as a 2-Factor fixed effects linear model.

(b) State the appropriate null hypothesis H_0^A and alternative hypothesis H_A^A .

(c) Perform a 2-Factor Randomized Complete Block ANOVA (2F rcbANOVA) with ($\alpha = 0.05$) significance level. Was the blocking effective? To save time: $SS_{total} \approx 257.643$, $SS_A \approx 217.357$, $SS_{[B]} \approx 10.810$, $SS_{res} \approx 29.476$

(d) Compute & interpret the eta-squared and partial eta-squared effect size measures: $\hat{\eta}_A^2$; $\hat{\eta}_{(A)}^2$

(e) Perform the appropriate Tukey Complete Pairwise Post-Hoc Comparison.