BULB LIFETIME (in years)				
WATTAGE: \rightarrow	60-Watt	75-Watt	100-Watt	TOTAL
BRAND: \downarrow	$(x_{\bullet 1})$	$(x_{\bullet 2})$	$(x_{\bullet 3})$	$\left(\sum_{j}\sum_{k}x_{ijk}\right)$
Brand 1 $(x_{1\bullet})$	9.23, 7.64, 8.59, 7.66	8.54, 5.98, 8.15, 8.30	$1.29, \ 3.13, \ 1.42, \ 3.28$	73.21
Brand 2 $(x_{2\bullet})$	14.54, 13.77, 15.43, 14.20	$10.82, \ 10.84, \ 12.86, \ 13.81$	$9.65, \ 9.00, \ 8.24, \ 8.61$	141.77
TOTAL $(\sum_i \sum_k x_{ijk})$	91.06	79.30	44.62	$\sum_{i} \sum_{j} \sum_{k} x_{ijk} = 214.98$

(a) Formulate this experiment as a 2-factor fixed effects linear model. In this context, what does "fixed effects" assume?

$\mu \equiv \text{Grand average bulb lifetime over all 2 brands and all 3 wattages}$
$X_{ijk} = \mu + \alpha_i + \alpha_j + \gamma_{ij} + E_{ijk} \text{where} (\alpha_i^{\cdot}, \alpha_j^{-}) \equiv \text{Bulb lifetime deviation from } \mu \text{ due to (Brand } i, \text{ Wattage } j)$
$(\gamma_{ij}, E_{ijk}) =$ Build inferime deviation from μ due to (interaction, noise)
Here, "fixed effects" assumes <u>all available</u> brands and wattages are considered. (i.e. There is no Brand 3, 90-Watt,)
(b) State the appropriate null & alternative hypotheses for factor A, factor B and interaction AB.
$H_0^A: \alpha_1^A = \alpha_2^A = 0 \qquad H_0^B: \alpha_1^B = \alpha_2^B = \alpha_3^B = 0 \qquad H_0^{AB}: \gamma_{11}^{AB} = \gamma_{12}^{AB} = \gamma_{13}^{AB} = \gamma_{21}^{AB} = \gamma_{22}^{AB} = \gamma_{23}^{AB} = 0$
$H_A^A: \qquad \alpha_1^A \neq \alpha_2^A \qquad H_A^B: \qquad \text{Some } \alpha_j^B \neq 0 \qquad H_A^{AB}: \qquad \text{Some } \gamma_{ij}^{AB} \neq 0$
(c) Perform a 2-Factor Balanced Completely Randomized ANOVA (2F bcrANOVA) with ($\alpha = 0.01$) significance level.
To save time and tedium: $SS_{total} = 366.15840$, $SS_{res} = 18.75875$, (and utilize the row & column totals in the table!)
1^{st} , determine counts: $I \equiv (\# \text{ levels of Factor A}) = 2$, $J \equiv (\# \text{ levels of Factor B}) = 3$, $K \equiv (\text{Group size}) = 4$
2^{nd} , compute dof's: $\nu_A := I - 1 = 1$, $\nu_B := J - 1 = 2$, $\nu_{AB} := (I - 1)(J - 1) = 2$, $\nu_{res} := IJ(K - 1) = 18$
3^{rd} , compute group means: $\overline{x}_{i \bullet \bullet} := \frac{1}{JK} \sum_j \sum_k x_{ijk}$ $\overline{x}_{\bullet j \bullet} := \frac{1}{IK} \sum_i \sum_k x_{ijk}$ $\overline{x}_{ij \bullet} := \frac{1}{K} \sum_k x_{ijk}$
$\overline{x}_{1\bullet} = \frac{73.21}{3\cdot 4} \approx 6.1008, \overline{x}_{2\bullet} \approx 11.8142; \overline{x}_{\bullet 1} = \frac{91.06}{2\cdot 4} = 11.3825, \overline{x}_{\bullet 2} = 9.9125, \overline{x}_{\bullet 3} = 5.5775$
4^{th} , compute grand mean: $\overline{x}_{\bullet\bullet\bullet} := \frac{1}{IJK} \sum_{ijk} x_{ijk} = \frac{1}{IJK} \sum_i \sum_j \sum_k x_{ijk} = \frac{1}{2\cdot3\cdot4} \cdot 214.98 = 8.9575$
5^{th} , compute the three unknown sums of squares: (SS _{total} & SS _{res} are given above.)
$SS_A := \sum_{ijk} (\hat{\alpha}_i^A)^2 = JK \cdot \sum_i (\overline{x}_{i \bullet \bullet} - \overline{x}_{\bullet \bullet \bullet})^2 = (3)(4) \cdot [(6.1008 - 8.9575)^2 + (11.8142 - 8.9575)^2] \approx 195.8576$
$SS_B := \sum_{ijk} (\hat{\alpha}_j^B)^2 = IK \cdot \sum_j (\overline{x}_{\bullet j \bullet} - \overline{x}_{\bullet \bullet \bullet})^2 = (2)(4) \cdot [(11.3825 - 8.9575)^2 + (9.9125 - 8.9575)^2 + (5.5775 - 8.9575)^2] \approx 145.8364$
$SS_{AB} = SS_{total} - SS_A - SS_B - SS_{res} = 366.15840 - 195.8576 - 145.8364 - 18.75875 $ ≈ 5.80565
$6^{th}: MS_A := \frac{SS_A}{\nu_A} \approx 195.8576, MS_B := \frac{SS_B}{\nu_B} \approx 72.9182, MS_{AB} := \frac{SS_{AB}}{\nu_{AB}} \approx 2.9028, MS_{res} := \frac{SS_{res}}{\nu_{res}} \approx 1.0422$
$7^{th}: f_A := \frac{MS_A}{MS_{res}} = \frac{195.8576}{1.0422} \approx 187.927, \qquad f_B := \frac{MS_B}{MS_{res}} = \frac{72.9182}{1.0422} \approx 69.966, \qquad f_{AB} := \frac{MS_{AB}}{MS_{res}} = \frac{2.9028}{1.0422} \approx 2.785$
$8^{th}: \ f^*_{\nu_A,\nu_{res};\alpha} = f^*_{1,18;0.01} \overset{LOOKUP}{\approx} 8.285, \qquad f^*_{\nu_B,\nu_{res};\alpha} = f^*_{2,18;0.01} \overset{LOOKUP}{\approx} 6.013, \qquad f^*_{\nu_{AB},\nu_{res};\alpha} \overset{LOOKUP}{\approx} 6.013$
9^{th} , render appropriate decisions:
Since $f_A \approx 187.9 > 8.285 \approx f^*_{\nu_A,\nu_{res};\alpha}$, reject H_0^A , meaning bulb brand has a significant effect on lifetime.
Since $f_B \approx 70 > 6.013 \approx f^*_{\nu_B,\nu_{res};\alpha}$, reject H^B_0 , meaning bulb wattage has a significant effect on lifetime.
Since $f_{AB} \approx 2.785 < 6.013 \approx f^*_{\nu_{AB},\nu_{res};\alpha}$, <u>accept</u> H_0^{AB} , meaning there is no significant interaction.
(d) Perform & interpret the appropriate Tukey Complete Pairwise Post-Hoc Comparison.
$w_{A} = q_{I,\nu_{res};\alpha}^{*} \cdot \sqrt{\text{MS}_{res}/(JK)} \approx 4.071 \cdot 0.2947 \approx 1.20, \qquad w_{B} = q_{J,\nu_{res};\alpha}^{*} \cdot \sqrt{\text{MS}_{res}/(IK)} \approx 4.702 \cdot 0.3609 \approx 1.70$

$\overline{x}_{(1)\bullet}$	$\overline{x}_{(2)\bullet}$	(Underline sorted means $\overline{x}_{(i)\bullet}$)	$\overline{x}_{ullet(1)}$	$\overline{x}_{\bullet(2)}$	$\overline{x}_{ullet(3)}$	(Underline sorted means $\overline{x}_{\bullet(j)}$)
$\overline{x}_{1\bullet}$	\overline{x}_{2ullet}	within $w_A \approx 1.20$	$\overline{x}_{ullet 3}$	$\overline{x}_{\bullet 2}$	$\overline{x}_{ullet 1}$	within $w_B \approx 1.70$
6.1008	11.8142	$\langle $ of each other, if any. $/$	44.62	79.30	91.06	$\langle $ of each other, if any. \rangle

Brand 2 bulbs have significantly longer lifetimes than Brand 1 bulbs.Higher wattage bulbs have significantly shorter lifetimes.

2.

^{©2018} Josh Engwer – Revised October 10, 2019

BULB LIFETIME (in years)					
WATTAGE: \rightarrow 60-Watt		75-Watt	100-Watt	TOTAL	
BRAND: \downarrow	$(x_{\bullet 1})$	$(x_{ullet 2})$	$(x_{\bullet 3})$	$(\sum_j \sum_k x_{ijk})$	
Brand 1 $(x_{1\bullet})$	$10.78, \ 9.87, \ 12.37, \ 8.38$	$5.79, \ 4.35, \ 7.02, \ 5.16$	2.51, 2.70, 5.05, 2.46	76.44	
Brand 2 $(x_{2\bullet})$	11.31, 12.63, 11.60, 12.15	16.31, 14.33, 14.66, 15.19	7.73, 8.27, 7.20, 10.86	142.24	
TOTAL $(\sum_i \sum_k x_{ijk})$	89.09	82.81	46.78	$\sum_{i} \sum_{j} \sum_{k} x_{ijk} = 218.68$	

(a) Formulate this experiment as a 2-factor fixed effects linear model.

$$X_{ijk} = \mu + \alpha_i^A + \alpha_j^B + \gamma_{ij}^{AB} + E_{ijk} \quad \text{where} \qquad \begin{pmatrix} \mu \\ (\alpha_i^A, \alpha_j^A) \\ (\alpha_i^A, \alpha_j^B) \end{pmatrix}$$

 $\mu \equiv \text{Grand average bulb lifetime over all 2 brands and all 3 wattages}$ $(\alpha_i^A, \alpha_j^B) \equiv \text{Bulb lifetime deviation from } \mu \text{ due to (Brand } i, \text{ Wattage } j)$ $(\gamma_{ij}^{AB}, E_{ijk}) \equiv \text{Bulb lifetime deviation from } \mu \text{ due to (interaction, noise)}$

(b) State the appropriate null & alternative hypotheses for factor A, factor B and interaction AB.

 $\begin{array}{lll} H_0^A: & \alpha_1^A = \alpha_2^A = 0 \\ H_A^A: & \alpha_1^A \neq \alpha_2^A \end{array} \quad \begin{array}{lll} H_0^B: & \alpha_1^B = \alpha_2^B = \alpha_3^B = 0 \\ H_A^A: & \alpha_1^A \neq \alpha_2^A \end{array} \quad \begin{array}{lll} H_0^B: & \alpha_1^B = \alpha_2^B = \alpha_3^B = 0 \\ H_A^A: & \alpha_1^A \neq \alpha_2^A \end{array} \quad \begin{array}{lll} H_A^B: & \operatorname{Some} \alpha_j^B \neq 0 \\ \end{array} \quad \begin{array}{lll} H_A^{AB}: & \operatorname{Some} \gamma_{ij}^{AB} = \gamma_{12}^{AB} = \gamma_{13}^{AB} = \gamma_{21}^{AB} = \gamma_{22}^{AB} = \gamma_{23}^{AB} = 0 \\ \operatorname{Some} \gamma_{ij}^{AB} \neq 0 \end{array} \quad \begin{array}{lll} H_A^{AB}: & \operatorname{Some} \gamma_{ij}^{AB} \neq 0 \end{array}$

(c) Perform a 2-Factor Balanced Completely Randomized ANOVA (2F bcrANOVA) with ($\alpha = 0.05$) significance level. To save time: $SS_{total} = 402.38170$, $SS_A \approx 180.40167$, $SS_B \approx 130.32231$, $SS_{AB} \approx 63.58691$, $SS_{res} = 28.07085$ 1^{st} , determine counts: $I \equiv (\#$ levels of Factor A) = 2, $J \equiv (\#$ levels of Factor B) = 3, $K \equiv (\text{Group size}) = 4$ 2^{nd} , compute dof's: $\nu_A := I - 1 = 1$, $\nu_B := J - 1 = 2$, $\nu_{AB} := (I - 1)(J - 1) = 2$, $\nu_{res} := IJ(K - 1) = 18$ 3^{rd} : $MS_A := \frac{SS_A}{\nu_A} \approx 180.40167$, $MS_B := \frac{SS_B}{\nu_B} \approx 65.16116$, $MS_{AB} := \frac{SS_{AB}}{\nu_{AB}} \approx 31.79346$, $MS_{res} := \frac{SS_{res}}{\nu_{res}} \approx 1.5595$ 4^{th} : $f_A := \frac{MS_A}{MS_{res}} = \frac{180.40167}{1.595} \approx 115.68$, $f_B := \frac{MS_B}{MS_{res}} = \frac{65.16116}{1.5595} \approx 41.78$, $f_{AB} := \frac{MS_{AB}}{MS_{res}} = \frac{31.79346}{1.5595} \approx 20.39$ 5^{th} : $f_{\nu_A,\nu_{res};\alpha} = f_{1,18;0.05}^* \overset{LOOKUP}{\approx} 4.414$, $f_{\nu_B,\nu_{res};\alpha}^* = f_{2,18;0.05}^* \overset{LOOKUP}{\approx} 3.555$, $f_{\nu_{AB},\nu_{res};\alpha}^* \overset{LOOKUP}{\approx} 3.555$ 6^{th} , render appropriate decisions: $\boxed{Since f_A \approx 115.68 > 4.414 \approx f_{\nu_A,\nu_{res};\alpha}^*, \qquad reject H_0^A, meaning bulb brand has a significant effect on lifetime. Since f_B \approx 41.78 > 3.555 \approx f_{\nu_B,\nu_{res};\alpha}^*, \qquad reject H_0^B, meaning bulb wattage has a significant effect on lifetime.$

Since $f_{AB} \approx 20.39 > 3.555 \approx f_{\nu_{AB},\nu_{res};\alpha}^*$, reject H_0^{AB} , meaning there is a significant interaction.

(d) Compute & interpret all the eta-squared & partial eta-squared effect size measures.

$\hat{\eta}_A^2 := \frac{\mathrm{SS}_A}{\mathrm{SS}_A + \mathrm{SS}_B + \mathrm{SS}_{AB} + \mathrm{SS}_{res}} = \frac{180.40167}{402.38170} \approx \boxed{0.448}$	\Rightarrow	44.8% of the variation in bulb lifetime is due to brand.
$\hat{\eta}_B^2 := \frac{{}_{\mathrm{SS}_B}}{{}_{\mathrm{SS}_A} + {}_{\mathrm{SS}_B} + {}_{\mathrm{SS}_{res}}} = \frac{130.32231}{402.38170} \approx \boxed{0.324}$	\implies	32.4% of the variation in bulb lifetime is due to wattage.
$\hat{\eta}_{AB}^2 := \frac{\mathrm{SS}_{AB}}{\mathrm{SS}_A + \mathrm{SS}_B + \mathrm{SS}_{AB} + \mathrm{SS}_{res}} = \frac{63.58691}{402.38170} \approx \boxed{0.158}$	\implies	15.8% of the variation in bulb lifetime is due to interaction.
$\hat{\eta}^2_{(A)} := \frac{\mathrm{SS}_A}{\mathrm{SS}_A + \mathrm{SS}_{res}} = \frac{180.40167}{180.40167 + 28.07085} \approx \boxed{0.865}$	\Rightarrow	86.5% of the variation possibly due to brand is truly due to it.
$\hat{\eta}^2_{(B)} := \frac{\mathrm{SS}_B}{\mathrm{SS}_B + \mathrm{SS}_{res}} = \frac{130.32231}{130.32231 + 28.07085} \approx \boxed{0.823}$	\Rightarrow	82.3% of the variation possibly due to wattage is truly due to it.
$\hat{\eta}^2_{(AB)} := \frac{\mathrm{SS}_{AB}}{\mathrm{SS}_{AB} + \mathrm{SS}_{res}} = \frac{63.58691}{63.58691 + 28.07085} \approx \boxed{0.694}$	\Rightarrow	69.4% of the variation possibly due to interaction is truly due to it.

©2018 Josh Engwer – Revised October 10, 2019