BULB LIFETIME (in years)					
WATTAGE: \rightarrow	$60-$ Watt	75 -Watt	$100-$ Watt	$\left(x_{\bullet 3}\right)$	

(a) Formulate this experiment as a 2 -factor fixed effects linear model. In this context, what does "fixed effects" assume?

$$
\begin{array}{cccc}
& \mu & \equiv \text { Grand average bulb lifetime over all } 2 \text { brands and all } 3 \text { wattages } \\
X_{i j k}=\mu+\alpha_{i}^{A}+\alpha_{j}^{[B]}+\gamma_{i j}^{A B}+E_{i j k} & \text { where } & \left(\alpha_{i}^{A}, \alpha_{j}^{B}\right) & \equiv \text { Bulb lifetime deviation from } \mu \text { due to (Brand } i, \text { Wattage } j) \\
& & \left(\gamma_{i j}^{A B}, E_{i j k}\right) & \equiv \text { Bulb lifetime deviation from } \mu \text { due to (interaction, noise) }
\end{array}
$$

Here, "fixed effects" assumes all available brands and wattages are considered. (i.e. There is no Brand 3, 90-Watt, ...)
(b) State the appropriate null \& alternative hypotheses for factor A, factor B and interaction $A B$.

$$
\begin{array}{rrrrrr}
H_{0}^{A}: & \alpha_{1}^{A}=\alpha_{2}^{A}=0 & H_{0}^{B}: & \alpha_{1}^{B}=\alpha_{2}^{B}=\alpha_{3}^{B}=0 & H_{0}^{A B}: \quad \gamma_{11}^{A B}=\gamma_{12}^{A B}=\gamma_{13}^{A B}=\gamma_{21}^{A B}=\gamma_{22}^{A B}=\gamma_{23}^{A B}=0 \\
H_{A}^{A}: & \alpha_{1}^{A} \neq \alpha_{2}^{A} & H_{A}^{B}: & \text { Some } \alpha_{j}^{B} \neq 0 & H_{A}^{A B}: & \text { Some } \gamma_{i j}^{A B} \neq 0
\end{array}
$$

(c) Perform a 2-Factor Balanced Completely Randomized ANOVA (2F bcrANOVA) with ($\alpha=0.01$) significance level.

To save time and tedium: $\mathrm{SS}_{\text {total }}=366.15840, \quad \mathrm{SS}_{\text {res }}=18.75875, \quad($ and utilize the row $\&$ column totals in the table!)
$1^{\text {st }}$, determine counts: $I \equiv(\#$ levels of Factor A$)=2, \quad J \equiv(\#$ levels of Factor B$)=3, \quad K \equiv($ Group size $)=4$
$2^{\text {nd }}$, compute dof's: $\quad \nu_{A}:=I-1=1, \quad \nu_{B}:=J-1=2, \quad \nu_{A B}:=(I-1)(J-1)=2, \quad \nu_{\text {res }}:=I J(K-1)=18$
$3^{\text {rd }}$, compute group means: $\quad \bar{x}_{i \bullet \bullet}:=\frac{1}{J K} \sum_{j} \sum_{k} x_{i j k} \quad \bar{x}_{\bullet j \bullet}:=\frac{1}{I K} \sum_{i} \sum_{k} x_{i j k} \quad \bar{x}_{i j \bullet}:=\frac{1}{K} \sum_{k} x_{i j k}$
$\bar{x}_{1} \bullet \frac{73.21}{3.4} \approx 6.1008, \quad \bar{x}_{2} \bullet 11.8142 ; \quad \bar{x}_{\bullet 1}=\frac{91.06}{2.4}=11.3825, \quad \bar{x}_{\bullet 2}=9.9125, \quad \bar{x}_{\bullet 3}=5.5775$
$4^{\text {th }}$, compute grand mean: $\quad \bar{x}_{\bullet . \bullet}:=\frac{1}{I J K} \sum_{i j k} x_{i j k}=\frac{1}{I J K} \sum_{i} \sum_{j} \sum_{k} x_{i j k}=\frac{1}{2 \cdot 3 \cdot 4} \cdot \mathbf{2 1 4 . 9 8}=8.9575$
$5^{t h}$, compute the three unknown sums of squares: $\quad\left(\mathrm{SS}_{\text {total }} \& \mathrm{SS}_{\text {res }}\right.$ are given above.)
$\mathrm{SS}_{A}:=\sum_{i j k}\left(\hat{\alpha}_{i}^{A}\right)^{2}=J K \cdot \sum_{i}\left(\bar{x}_{i \bullet \bullet}-\bar{x} \bullet \bullet \bullet\right)^{2}=(3)(4) \cdot\left[(6.1008-8.9575)^{2}+(11.8142-8.9575)^{2}\right] \quad \approx 195.8576$
$\mathrm{SS}_{B}:=\sum_{i j k}\left(\hat{\alpha}_{j}^{B}\right)^{2}=I K \cdot \sum_{j}\left(\bar{x}_{\bullet \cdot} \bullet-\bar{x} \bullet \bullet \bullet\right)^{2}=(2)(4) \cdot\left[(11.3825-8.9575)^{2}+(9.9125-8.9575)^{2}+(5.5775-8.9575)^{2}\right] \approx 145.8364$
$\mathrm{SS}_{A B}=\mathrm{SS}_{\text {total }}-\mathrm{SS}_{A}-\mathrm{SS}_{B}-\mathrm{SS}_{\text {res }}=366.15840-195.8576-145.8364-18.75875 \quad \approx 5.80565$

$$
\begin{aligned}
& 6^{\text {th }}: \mathrm{MS}_{A}:=\frac{\mathrm{SS}_{A}}{\nu_{A}} \approx 195.8576, \quad \mathrm{MS}_{B}:=\frac{\mathrm{SS}_{B}}{\nu_{B}} \approx 72.9182, \quad \mathrm{MS}_{A B}:=\frac{\mathrm{SS}_{A B}}{\nu_{A B}} \approx 2.9028, \quad \mathrm{MS}_{\text {res }}:=\frac{\mathrm{SS}_{\text {res }}}{\nu_{\text {res }}} \approx 1.0422 \\
& 7^{\text {th }}: f_{A}:=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{\text {res }}}=\frac{195.8576}{1.0422} \approx 187.927, \quad f_{B}:=\frac{\mathrm{MS}_{B}}{\mathrm{MS}_{\text {res }}}=\frac{72.9182}{1.0422} \approx 69.966, \quad f_{A B}:=\frac{\mathrm{MS}_{A B}}{\mathrm{MS}_{\text {res }}}=\frac{2.9028}{1.0422} \approx 2.785 \\
& 8^{\text {th }}: f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}=f_{1,18 ; 0.01}^{*} \stackrel{\text { LOOKUP }}{\approx} 8.285, \quad f_{\nu_{B}, \nu_{r e s} ; \alpha}^{*}=f_{2,18 ; 0.01}^{*} \stackrel{\text { LOOKUP }}{\approx} 6.013, \quad f_{\nu_{A B}, \nu_{r e s} ; \alpha}^{*}{ }^{\text {LOOKUP }} \underset{\approx}{\approx} 6.013 \\
& 9^{t h} \text {, render appropriate decisions: }
\end{aligned}
$$

(d) Perform \& interpret the appropriate Tukey Complete Pairwise Post-Hoc Comparison.

$$
w_{A}=q_{I, \nu_{r e s} ; \alpha}^{*} \cdot \sqrt{\mathrm{MS}_{r e s} /(J K)} \approx 4.071 \cdot 0.2947 \approx 1.20, \quad w_{B}=q_{J, \nu_{r e s} ; \alpha}^{*} \cdot \sqrt{\mathrm{MS}_{r e s} /(I K)} \approx 4.702 \cdot 0.3609 \approx 1.70
$$

$\bar{x}_{(1) \bullet}$	$\bar{x}_{(2) \bullet}$
$\bar{x}_{1} \bullet$	$\bar{x}_{2 \bullet}$
6.1008	11.8142

within w_{A} \approx 1.20 \\

of each other, if any.\end{array}\right) \quad\)| $\bar{x}_{\bullet(1)}$ | $\bar{x}_{\bullet(2)}$ | $\bar{x}_{\bullet(3)}$ |
| :---: | :---: | :---: |
| $\bar{x}_{\bullet 3}$ | $\bar{x}_{\bullet 2}$ | $\bar{x}_{\bullet 1}$ |
| 44.62 | 79.30 | 91.06 |\(\left(\begin{array}{c}Underline sorted means \bar{x}_{\bullet(j)} \\

within w_{B} \approx 1.70 \\
of each other, if any.\end{array}\right)\)
$\therefore \quad$ Brand 2 bulbs have significantly longer lifetimes than Brand 1 bulbs.
$\therefore \quad$ Higher wattage bulbs have significantly shorter lifetimes.

BULB LIFETIME (in years)					
WATTAGE: \rightarrow	$60-$ Watt	75 -Watt	100 -Watt	$\left(x_{\bullet 3}\right)$	TOTAL
BRAND:	\downarrow	$\left(x_{\bullet}\right)$	$\left(x_{\bullet}\right)$	$\left(\sum_{j} \sum_{k} x_{i j k}\right)$	
Brand $1\left(x_{1}\right)$	$10.78,9.87,12.37,8.38$	$5.79,4.35,7.02,5.16$	$2.51,2.70,5.05,2.46$	$\mathbf{7 6 . 4 4}$	
Brand $2\left(x_{2 \bullet}\right)$	$11.31,12.63,11.60,12.15$	$16.31,14.33,14.66,15.19$	$7.73,8.27,7.20,10.86$	$\mathbf{1 4 2 . 2 4}$	
TOTAL $\left(\sum_{i} \sum_{k} x_{i j k}\right)$	$\mathbf{8 9 . 0 9}$	$\mathbf{8 2 . 8 1}$	$\mathbf{4 6 . 7 8}$	$\sum_{i} \sum_{j} \sum_{k} x_{i j k}=\mathbf{2 1 8 . 6 8}$	

(a) Formulate this experiment as a 2 -factor fixed effects linear model.

$$
\begin{array}{ccc}
& \mu & \equiv \text { Grand average bulb lifetime over all } 2 \text { brands and all } 3 \text { wattages } \\
X_{i j k}=\mu+\alpha_{i}^{A}+\alpha_{j}^{B}+\gamma_{i j}^{A B}+E_{i j k} & \text { where } & \left(\alpha_{i}^{A}, \alpha_{j}^{B}\right) \\
& \equiv \text { Bulb lifetime deviation from } \mu \text { due to (Brand } i \text {, Wattage } j \text {) } \\
\left(\gamma_{i j}^{A B}, E_{i j k}\right) & \equiv \text { Bulb lifetime deviation from } \mu \text { due to (interaction, noise) }
\end{array}
$$

(b) State the appropriate null \& alternative hypotheses for factor A, factor B and interaction $A B$.

$$
\begin{array}{rrrrr}
H_{0}^{A}: & \alpha_{1}^{A}=\alpha_{2}^{A}=0 & H_{0}^{B}: & \alpha_{1}^{B}=\alpha_{2}^{B}=\alpha_{3}^{B}=0 & H_{0}^{A B}: \quad \gamma_{11}^{A B}=\gamma_{12}^{A B}=\gamma_{13}^{A B}=\gamma_{21}^{A B}=\gamma_{22}^{A B}=\gamma_{23}^{A B}=0 \\
H_{A}^{A}: & \alpha_{1}^{A} \neq \alpha_{2}^{A} & H_{A}^{B}: & \text { Some } \alpha_{j}^{B} \neq 0 & H_{A}^{A B}:
\end{array}
$$

(c) Perform a 2-Factor Balanced Completely Randomized ANOVA (2F bcrANOVA) with ($\alpha=0.05$) significance level.

To save time: $\quad \mathrm{SS}_{\text {total }}=402.38170, \quad \mathrm{SS}_{A} \approx 180.40167, \quad \mathrm{SS}_{B} \approx 130.32231, \quad \mathrm{SS}_{A B} \approx 63.58691, \quad \mathrm{SS}_{\text {res }}=28.07085$
$1^{\text {st }}$, determine counts: $I \equiv(\#$ levels of Factor A$)=2, \quad J \equiv(\#$ levels of Factor B) $=3, \quad K \equiv($ Group size $)=4$
$2^{n d}$, compute dof's: $\quad \nu_{A}:=I-1=1, \quad \nu_{B}:=J-1=2, \quad \nu_{A B}:=(I-1)(J-1)=2, \quad \nu_{\text {res }}:=I J(K-1)=18$
$3^{\text {rd }}: \mathrm{MS}_{A}:=\frac{\mathrm{SS}_{A}}{\nu_{A}} \approx 180.40167, \quad \mathrm{MS}_{B}:=\frac{\mathrm{SS}_{B}}{\nu_{B}} \approx 65.16116, \quad \mathrm{MS}_{A B}:=\frac{\mathrm{SS}_{A B}}{\nu_{A B}} \approx 31.79346, \quad \mathrm{MS}_{\text {res }}:=\frac{\mathrm{SS}_{\text {res }}}{\nu_{\text {res }}} \approx 1.5595$
$4^{t h}: f_{A}:=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{\text {res }}}=\frac{180.40167}{1.5595} \approx 115.68, \quad f_{B}:=\frac{\mathrm{MS}_{B}}{\mathrm{MS}_{r e s}}=\frac{65.16116}{1.5595} \approx 41.78, \quad f_{A B}:=\frac{\mathrm{MS}_{A B}}{\mathrm{MS}_{\text {res }}}=\frac{31.79346}{1.5595} \approx 20.39$
$5^{\text {th }}: f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}=f_{1,18 ; 0.05}^{*} \stackrel{\text { LOOKUP }}{\approx} 4.414, \quad f_{\nu_{B}, \nu_{r e s} ; \alpha}^{*}=f_{2,18 ; 0.05}^{*} \stackrel{\text { LOOKUP }}{\approx} 3.555, \quad f_{\nu_{A B}, \nu_{r e s} ; \alpha}^{*} \stackrel{\text { LOOKUP }}{\approx} 3.555$
$6^{t h}$, render appropriate decisions:

| Since | f_{A} | $\approx 115.68>4.414$ | $\approx f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}$, | $\underline{\text { reject }} H_{0}^{A}$, meaning bulb brand has a significant effect on lifetime. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Since | f_{B} | $\approx 41.78>3.555$ | $\approx f_{\nu_{B}, \nu_{r e s} ; \alpha}$, | $\underline{\text { reject }} H_{0}^{B}$, meaning bulb wattage has a significant effect on lifetime. |
| Since $\quad f_{A B}$ | $\approx 20.39>3.555$ | $\approx f_{\nu_{A B}, \nu_{r e s} ; \alpha}^{*}$, | $\underline{\text { reject }} H_{0}^{A B}$, meaning there is a significant interaction. | |

(d) Compute \& interpret all the eta-squared \& partial eta-squared effect size measures.

$$
\begin{aligned}
& \hat{\eta}_{A}^{2}:=\frac{\mathrm{SS}_{A}}{\mathrm{SS}_{A}+\mathrm{SS}_{B}+\mathrm{SS}_{A B}+\mathrm{SS}_{\text {res }}}=\frac{180.40167}{402.38170} \approx 0.448 \Longrightarrow 44.8 \% \text { of the variation in bulb lifetime is due to brand. } \\
& \hat{\eta}_{B}^{2}:=\frac{\mathrm{SS}_{B}}{\mathrm{SS}_{A}+\mathrm{SS}_{B}+\mathrm{SS}_{A B}+\mathrm{SS}_{\text {res }}}=\frac{130.32231}{402.38170} \approx 0.324 \quad \Longrightarrow \quad 32.4 \% \text { of the variation in bulb lifetime is due to wattage. } \\
& \hat{\eta}_{A B}^{2}:=\frac{\mathrm{SS}_{A B}}{\mathrm{SS}_{A}+\mathrm{SS}_{B}+\mathrm{SS}_{A B}+\mathrm{SS}_{r e s}}=\frac{63.58691}{402.38170} \approx 0.158 \quad \Longrightarrow \quad 15.8 \% \text { of the variation in bulb lifetime is due to interaction. } \\
& \hat{\eta}_{(A)}^{2}:=\frac{\mathrm{SS}_{A}}{\mathrm{SS}_{A}+\mathrm{SS}_{\text {res }}}=\frac{180.40167}{180.40167+28.07085} \approx 0.865 \quad \Longrightarrow \quad 86.5 \% \text { of the variation possibly due to brand is truly due to it. } \\
& \hat{\eta}_{(B)}^{2}:=\frac{\mathrm{SS}_{B}}{\mathrm{SS}_{B}+\mathrm{SS}_{\text {res }}}=\frac{130.32231}{130.32231+28.07085} \approx 0.823 \quad \Longrightarrow \quad 82.3 \% \text { of the variation possibly due to wattage is truly due to it. } \\
& \hat{\eta}_{(A B)}^{2}:=\frac{\mathrm{SS}_{A B}}{\mathrm{SS}_{A B}+\mathrm{SS}_{r e s}}=\frac{63.58691}{63.58691+28.07085} \approx 0.694 \quad \Longrightarrow \quad 69.4 \% \text { of the variation possibly due to interaction is truly due to it. }
\end{aligned}
$$

