
2-FACTOR BALANCED EXPERIMENTS, MAIN EFFECTS & INTERACTIONS

[DEVORE 11.2]

WHY 2F ANOVA AND NOT TWO 1F ANOVA’S:

Suppose one wishes to analyze a designed experiment involving two factors.

It seems reasonable to conduct two independent 1-Factor ANOVA’s

– one on the 1st factor (factor A), the other on the 2nd factor (factor B).

Unfortunately, this is a poor strategy for the following reasons♣♥:

1. 2F ANOVA tests for an interaction effect – two 1F ANOVA’s cannot.

• (Definition and details later in this outline.)

2. 2F ANOVA results in more powerful F -tests than two 1F ANOVA’s.

• i.e. 2F ANOVA better explains variability than two 1F ANOVA’s.

3. 2F ANOVA is more cost efficient than two 1F ANOVA’s.

• 2F ANOVA requires half as many measurements as two 1F ANOVA’s.

4. 3F ANOVA generalizes easily from 2F ANOVA, not from two 1F ANOVA’s.

♣ R.G. Lomax, D.L. Hahs-Vaughn, Statistical Concepts: A 2nd Course, 4th Ed., 2012.

♥ J.P. Stevens, Intermediate Statistics: A Modern Approach, 3rd Ed., 2007.

2-FACTOR BALANCED EXPERIMENTS:

A 2-factor experiment with equal group sizes of K > 1 is called balanced.

A I × J 2F experiment means Factor A has I levels & Factor B has J levels.

FACTOR B: →
FACTOR A: ↓

Level 1

(x•1)

Level 2

(x•2)

Level 1 (x1•) x111, x112 x121, x122

Level 2 (x2•) x211, x212 x221, x222

Level 3 (x3•) x311, x312 x321, x322

Prototype 3× 2 balanced experiment with K = 2

x11• = Mean of all measurements at Level 1 of Factor A & Level 1 of Factor B = (x111 + x112)/2

x32• = Mean of all measurements at Level 3 of Factor A & Level 2 of Factor B = (x321 + x322)/2

x1•• = Mean of all measurements at Level 1 of Factor A = (x111 + x112 + x121 + x122)/4

x3•• = Mean of all measurements at Level 3 of Factor A = (x311 + x312 + x321 + x322)/4

x•1• = Mean of all measurements at Level 1 of Factor B = (x111 + x112 + x211 + x212 + x311 + x312)/6

x•2• = Mean of all measurements at Level 2 of Factor B = (x121 + x122 + x221 + x222 + x321 + x322)/6

MAIN EFFECTS: Given a 2-Factor balanced completely randomized experiment.

A main effect of one factor is present if its effect at a fixed level is the same for all levels of the other factor.

INTERACTION EFFECTS: Given a 2-Factor balanced completely randomized experiment.

An interaction♠ (effect) is present if one factor’s effect at a fixed level is not the same for all levels of the other factor.

i.e. The combined levels of the two factors results in an effect in addition to any main effects of each factor alone.

i.e. A lack of interaction means the two factors’ effects are independent.

♠ J.P. Stevens, Intermediate Statistics: A Modern Approach, 3rd Ed., 2007.
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2x2 INTERACTION PLOTS (SEE SLIDES FOR MORE DETAILS) [DEVORE 11.2]

• 2x2 Plot (Given: A=no, B=no, AB=no) (Given: A=yes, B=yes, AB=no):

• 2x2 Plot (Given: A=yes, B=no, AB=no) (Given: A=no, B=yes, AB=no):

• 2x2 Plot (Given: A=no, B=no, AB=yes) (Given: A=yes, B=yes, AB=yes):

• 2x2 Plot (Given: A=yes, B=no, AB=yes) (Given: A=no, B=yes, AB=yes):

MORAL OF THE STORY REGARDING INTERACTION PLOTS:

1. Use interaction plots to infer the presence of a significant interaction.

– Widen plot’s vertical axis limits by four times the estimated std deviation.

– Otherwise, an interaction may appear when the vertical axis scale is small.

2. If there’s no significant interaction present, the presence of main effects can be inferred.

3. If there is a significant interaction present, it’s too hard to infer presence of main effects visually.

– However, the actual 2F ANOVA may infer presence of main effects, but their proper interpretation is hard.

– Moreover, 2F ANOVA can infer the presence of an interaction.

All this said, interaction plots are mainly used to determine the presence of a significant interaction before performing an ANOVA

when the corresponding assumptions call for the presence or lack of said interaction.
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4x3 INTERACTION PLOTS (SEE SLIDES FOR MORE DETAILS) [DEVORE 11.2]

• 4x3 Plot (Given: A=no, B=no, AB=no) (Given: A=yes, B=yes, AB=no):

• 4x3 Plot (Given: A=yes, B=no, AB=no) (Given: A=no, B=yes, AB=no):

• 4x3 Plot (Given: A=no, B=no, AB=yes) (Given: A=yes, B=yes, AB=yes):

• 4x3 Plot (Given: A=yes, B=no, AB=yes) (Given: A=no, B=yes, AB=yes):

MORAL OF THE STORY REGARDING INTERACTION PLOTS:

1. Use interaction plots to infer the presence of a significant interaction.

– Widen plot’s vertical axis limits by four times the estimated std deviation.

– Otherwise, an interaction may appear when the vertical axis scale is small.

2. If there’s no significant interaction present, the presence of main effects can be inferred.

3. If there is a significant interaction present, it’s too hard to infer presence of main effects visually.

– However, the actual 2F ANOVA may infer presence of main effects, but their proper interpretation is hard.

– Moreover, 2F ANOVA can infer the presence of an interaction.

All this said, interaction plots are mainly used to determine the presence of a significant interaction before performing an ANOVA

when the corresponding assumptions call for the presence or lack of said interaction.
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2-FACTOR LINEAR MODELS & POINT ESTIMATORS [DEVORE 11.2]

2-FACTOR FIXED EFFECTS LINEAR MODEL (DEFINITION):

Given a 2-factor balanced experiment with IJ groups, each of size K > 1.

In particular, factor A has I levels and factor B has J levels.

Then, the linear (statistical) model for the experiment is defined as:

Xijk = µ+ αAi + αBj + γABij + Eijk where Eijk
iid∼ Normal(0, σ2)

Xijk ≡ rv for kth measurement at (i, j)-level of factors A & B.

µ ≡ Population grand mean of all IJ population means

(αAi , α
B
j ) ≡ Effect of (ith-level factor A, jth-level factor B)

γABij ≡ Interaction between (i, j)-level factors A & B

Eijk ≡ Deviation of Xijk from µ due to random error

Fixed effects means all relevant levels of factor A are considered in model.

2-FACTOR LINEAR MODEL (LEAST-SQUARES ESTIMATORS – LSE’s):

Given a 2-factor linear model: Xijk = µ+ αAi + αBj + γABij + Eijk where Eijk
iid∼ Normal(0, σ2)

Then:

(a) The least-squares♠♣ estimators†‡ (LSE’s) for the model parameters are:

µ̂ = x•••

α̂Ai = xi•• − x•••
α̂Bj = x•j• − x•••
γ̂ABij = xij• − xi•• − x•j• + x•••

where

x••• ≡ Grand sample mean

xi•• ≡ Mean of groups at ith-lvl A

x•j• ≡ Mean of groups at jth-lvl B

xij• ≡ Mean of (i, j)-lvl group

(b) For these least-squares estimators, it’s required that
∑
i α

A
i =

∑
j α

B
j =

∑
i γ
AB
ij =

∑
j γ

AB
ij = 0.

(c) These least-squares estimators are all unbiased.

†A. Dean, D. Voss, D. Draguljić, Design & Analysis of Experiments, 2nd Ed, Springer, 2017. (§3.4.3)

‡D.C. Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.3.3, §3.10.1)

♠A.M. Legendre, Nouvelles Méthodes pour la Détermination des Orbites des Comètes, 1806.

♣Gauss, Theoria Motus Corporum Coelestrium in Sectionibus Conicis Solem Ambientium, 1809.

2-FACTOR LINEAR MODEL (PREDICTED RESPONSES & RESIDUALS):

Given a 2-factor linear model: Xijk = µ+ αAi + αBj + γABij + Eijk where Eijk
iid∼ Normal(0, σ2)

Then the corresponding predicted responses, denoted x̂ijk, are:

x̂ijk := µ̂+ α̂Ai + α̂Bj + γ̂ABij = xij•

Moreover, the corresponding residuals, denoted xresijk , are:

xresijk := xijk − x̂ijk = xijk − xij•

2-FACTOR LINEAR MODEL (GAUSS1-MARKOV2 THEOREM):

Given a 2-factor linear model: Xijk = µ+ αAi + αBj + γABij + Eijk

Moreover, suppose the following conditions are all satisfied:

E[Eijk] = 0 (errors are all centered at zero)

V[Eijk] = σ2 (errors all have the same finite variance)

C[Eijk, Ei′j′k′ ] = 0 (errors are uncorrelated when i 6= i′ or j 6= j′ or k 6= k′)

Then, the least-squares estimators (LSE’s) µ̂, α̂Ai , α̂
B
j , γ̂

AB
ij are all BLUE’s.

1C.F. Gauss, “Theoria Combinationis Observationum Erroribus Minimis Obnoxiae”, (1823), 1-58.

2A.A. Markov, Calculus of Probabilities, 1st Edition, 1900.
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2-FACTOR ANOVA (MOTIVATION – NO INTERACTION) [DEVORE 11.2]

s2A/s
2
within � 1 =⇒ Factor A clearly has no significant main effect!

s2B/s
2
within � 1 =⇒ Factor B clearly has no significant main effect!

s2AB/s
2
within � 1 =⇒ Factors A & B clearly have no interactive effect!

s2A/s
2
within � 1 =⇒ Factor A clearly has a significant main effect!

s2B/s
2
within � 1 =⇒ Factor B clearly has no significant main effect!

s2AB/s
2
within � 1 =⇒ Factors A & B clearly have no interactive effect!

s2A/s
2
within � 1 =⇒ Factor A clearly has no significant main effect!

s2B/s
2
within � 1 =⇒ Factor B clearly has a significant main effect!

s2AB/s
2
within � 1 =⇒ Factors A & B clearly have no interactive effect!

s2A/s
2
within � 1 =⇒ Factor A clearly has a significant main effect!

s2B/s
2
within � 1 =⇒ Factor B clearly has a significant main effect!

s2AB/s
2
within � 1 =⇒ Factors A & B clearly have no interactive effect!
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2-FACTOR ANOVA (MOTIVATION – WITH INTERACTION) [DEVORE 11.2]

s2A/s
2
within � 1 =⇒ Factor A clearly has no significant main effect!

s2B/s
2
within � 1 =⇒ Factor B clearly has no significant main effect!

s2AB/s
2
within � 1 =⇒ Factors A & B clearly have an interactive effect!

s2A/s
2
within � 1 =⇒ Factor A clearly has a significant main effect!

s2B/s
2
within � 1 =⇒ Factor B clearly has no significant main effect!

s2AB/s
2
within � 1 =⇒ Factors A & B clearly have an interactive effect!

s2A/s
2
within � 1 =⇒ Factor A clearly has no significant main effect!

s2B/s
2
within � 1 =⇒ Factor B clearly has a significant main effect!

s2AB/s
2
within � 1 =⇒ Factors A & B clearly have an interactive effect!

s2A/s
2
within � 1 =⇒ Factor A clearly has a significant main effect!

s2B/s
2
within � 1 =⇒ Factor B clearly has a significant main effect!

s2AB/s
2
within � 1 =⇒ Factors A & B clearly have an interactive effect!
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2-FACTOR BALANCED COMPLETELY RANDOMIZED ANOVA (2F bcrANOVA)

[DEVORE 11.2]

• 2F bcrANOVA (BALANCED COMPLETELY RANDOMIZED DESIGN): As an example:

– Collect 12 relevant experimental units (EU’s): EU1,EU2, · · · ,EU12

– Produce a random shuffle sequence using software: (6, 10; 3, 1; 5, 8; 11, 9; 7, 2; 12, 4)

– Use random shuffle sequence to assign the EU’s into the IJ groups.

– Measure each EU appropriately. (note the change in notation)

FACTOR B: →
FACTOR A: ↓

Lvl 1 Lvl 2 Lvl 3

Level 1
EU6,

EU10

EU3,

EU1

EU5,

EU8

Level 2
EU11,

EU9

EU7,

EU2

EU12,

EU4

MEASURE
=⇒

B: →
A: ↓

Lvl 1

(x•1)

Lvl 2

(x•2)

Lvl 3

(x•3)

Lvl 1 (x1•)
x111,

x112

x121,

x122

x131,

x132

Lvl 2 (x2•)
x211,

x212

x221,

x222

x231,

x232

• 2F bcrANOVA (FIXED EFFECTS MODEL ASSUMPTIONS):

? (2 Desired Factors) Factor A has I levels & Factor B has J levels.

? (All Factor Levels are Considered) AKA Fixed Effects.

? (Factors are Crossed) IJ groups – one per (i, j)-level factor combination.

? (Balanced Replication in Groups) Each group has K > 1 units.

? (Distinct Exp. Units ) All IJK units are distinct from each other.

? (Random Assignment across Groups)

? (Independence) All measurements on units are independent.

? (Normality) All groups are approximately normally distributed.

? (Equal Variances) All groups have approximately same variance.

Mnemonic: 2DF AFLaC FaC BRiG DEU | RAaG | I.N.EV

• 2F bcrANOVA (SUMS OF SQUARES “PARTITION” VARIATION):

SStotal︸ ︷︷ ︸
Total V ariation
in Experiment

= SSA︸︷︷︸
V ariation due
to Factor A

+ SSB︸︷︷︸
V ariation due
to Factor B

+ SSAB︸ ︷︷ ︸
V ariation due
to Interaction

+ SSres︸ ︷︷ ︸
Unexplained
V ariation

∑
ijk

(xijk − µ̂)2 =
∑
ijk

(α̂Ai )2 +
∑
ijk

(α̂Bj )2 +
∑
ijk

(γ̂ABij )2 +
∑
ijk

(xresijk )2

ν︸︷︷︸
Total dof ′s in
Experiment

= νA︸︷︷︸
Factor A
dof ′s

+ νB︸︷︷︸
Factor B
dof ′s

+ νAB︸︷︷︸
Interaction

dof ′s

+ νres︸︷︷︸
′Within Groups′

dof ′s

ν = IJK − 1, νA = I − 1, νB = J − 1, νAB = (I − 1)(J − 1), νres = IJ(K − 1)

• 2F bcrANOVA (EXPECTED MEAN SQUARES):

(i) E[MSres] = σ2

(ii) E[MSA] = σ2 + JK
I−1

∑
i(α

A
i )2

(iii) E[MSB ] = σ2 + IK
J−1

∑
j(α

B
j )2

(iv) E[MSAB ] = σ2 + K
(I−1)(J−1)

∑
i

∑
j(γ

AB
ij )2

• 2F bcrANOVA (POINT ESTIMATORS OF σ2):

(i) Regardless of the truthness of HA
0 , H

B
0 , H

AB
0 =⇒ E[MSres] = σ2

(ii) HA
0 is true =⇒ E[MSA] = σ2, HA

0 is false =⇒ E[MSA] > σ2

(iii) HB
0 is true =⇒ E[MSB ] = σ2, HB

0 is false =⇒ E[MSB ] > σ2

(iv) HAB
0 is true =⇒ E[MSAB ] = σ2, HAB

0 is false =⇒ E[MSAB ] > σ2

c©2018 Josh Engwer – Revised October 10, 2019



2-FACTOR BALANCED COMPLETELY RANDOMIZED ANOVA (2F bcrANOVA)

[DEVORE 11.2]

• 2F bcrANOVA (FIXED EFFECTS LINEAR MODEL):

2F bcrANOVA Fixed Effects Linear Model

(I, J) ≡ (# levels of factor A, # levels of factor B)

K ≡ # observations (replications) at each (i, j)-level of factors A & B

Xijk ≡ rv for kth observation at (i, j)-level of factors A & B

µ ≡ Mean average response over all levels of factors A & B

(αAi , α
B
j ) ≡ (Effect of ith-level factor A, Effect of jth-level factor B)

γABij ≡ Interaction between (i, j)-level factors A & B

Eijk ≡ Deviation from µ due to random error

ASSUMPTIONS: Eijk
iid∼ Normal

(
0, σ2

)
Xijk = µ+ αAi + αBj + γABij + Eijk where

{ ∑
i α

A
i =

∑
j α

B
j = 0∑

i γ
AB
ij =

∑
j γ

AB
ij = 0

HA
0 : All αAi = 0

HA
A : Some αAi 6= 0

HB
0 : All αBj = 0

HB
A : Some αBj 6= 0

HAB
0 : All γABij = 0

HAB
A : Some γABij 6= 0

• 2F bcrANOVA (F -TEST PROCEDURE):

1. Determine df’s: νA = I − 1, νB = J − 1, νAB = (I − 1)(J − 1), νres = IJ(K − 1)

2. Compute Group Means (if not provided): xi•• := 1
JK

∑
j

∑
k xijk, x•j• := 1

IK

∑
i

∑
k xijk, xij• := 1

K

∑
k xijk

3. Compute Grand Mean: x••• := 1
IJK

∑
i

∑
j

∑
k xijk

4. Compute SSres :=
∑
ijk(xresijk )2 =

∑
i

∑
j

∑
k(xijk − xij•)2

5. Compute SSA :=
∑
ijk(α̂Ai )2 =

∑
i

∑
j

∑
k(xi•• − x•••)2

6. Compute SSB :=
∑
ijk(α̂Bj )2 =

∑
i

∑
j

∑
k(x•j• − x•••)2

7. Compute SSAB :=
∑
ijk(γ̂ABij )2 =

∑
i

∑
j

∑
k(xij• − xi•• − x•j• + x•••)2

(Optional) SStotal :=
∑
ijk(xijk − µ̂)2 =

∑
i

∑
j

∑
k(xijk − x•••)2

8. Compute Mean Squares: MSres :=
SSres

νres
, MSA :=

SSA

νA
, MSB =

SSB

νB
, MSAB =

SSAB

νAB

9. Compute Test Statistic Values: fA =
MSA

MSres
, fB =

MSB

MSres
, fAB =

MSAB

MSres

10. (if using software) Compute P-values:


pA := P(F > fA) ≈ 1− ΦF (fA; νA, νres)

pB := P(F > fB) ≈ 1− ΦF (fB ; νB , νres)

pAB := P(F > fAB) ≈ 1− ΦF (fAB ; νAB , νres)

11. Render Decisions:


If pA ≤ α or fA > f∗νA,νres;α then reject HA

0 else accept HA
0 .

If pB ≤ α or fB > f∗νB ,νres;α then reject HB
0 else accept HB

0 .

If pAB ≤ α or fAB > f∗νAB ,νres;α
then reject HAB

0 else accept HAB
0 .

• 2F bcrANOVA (SUMMARY TABLE):

2F bcrANOVA Table (Significance Level α)

Variation

Source
df

Sum of

Squares

Mean

Square

F Stat

Value
P-value Decision

A νA SSA MSA fA pA Acc/Rej HA
0

B νB SSB MSB fB pB Acc/Rej HB
0

AB νAB SSAB MSAB fAB pAB Acc/Rej HAB
0

Unknown νres SSres MSres

Total ν SStotal
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2F bcrANOVA (EFFECT SIZE MEASURES) [DEVORE 11.2]

• 2F bcrANOVA (EFFECT SIZE MEASURES & THEIR INTERPRETATIONS):

YEAR NAME MEASURE INTERPRETATION:

1925†
Fisher

(Eta-Squared)

η̂2A := SSA
SStotal

= 0.38

η̂2B := SSB
SStotal

= 0.02

η̂2AB := SSAB
SStotal

= 0.27

η̂2res := SSres
SStotal

= 0.33

38% of the variation in the reponse

is due to Factor A

2% of the variation in the reponse

is due to Factor B

27% of the variation in the reponse

is due to Interaction AB

33% of the variation in the reponse

is unexplained with experiment

1965‡
Cohen♠♣

(Partial η2)

η̂2
(A)

:= SSA
SSA+SSres

= 0.43

η̂2
(B)

:= SSB
SSB+SSres

= 0.65

η̂2
(AB)

:= SSAB
SSAB+SSres

= 0.31

43% of the variation possibly due to A

is actually due to A

65% of the variation possibly due to B

is actually due to B

31% of the variation possibly due to AB

is actually due to AB

η̂2A + η̂2B + η̂2AB + η̂2res = 1 but η̂2
(A)

+ η̂2
(B)

+ η̂2
(AB)

> 1

†R.A. Fisher, Statistical Methods for Reasearch Workers, 1925.

‡B.B. Wolman (Ed.), Handbook of Clinical Psychology, 1965. (§5 by J. Cohen)

♠F.J. Gravetter, L.B. Wallnau, Statistics for the Behavioral Sciences, 7th Ed., 2007.

♣R.G. Lomax, D.L. Hahs-Vaughn, Statistical Concepts: A 2nd Course, 4th Ed., 2012.

• 2F bcrANOVA (MORE EFFECT SIZE MEASURES):

YEAR NAME MEASURE

1963♦
Hays

(Omega-Squared)

ω̂2
A := SSA−νAMSres

SStotal+MSres

ω̂2
B := SSB−νBMSres

SStotal+MSres

ω̂2
AB := SSAB−νABMSres

SStotal+MSres

1979♥
Keren-Lewis

(Partial ω2)

ω̂2
(A)

:= SSA−νAMSres
SSA+(n−νA)MSres

ω̂2
(B)

:= SSB−νBMSres
SSB+(n−νB)MSres

ω̂2
(AB)

:= SSAB−νABMSres
SSAB+(n−νAB)MSres

n := IJK = (1 + νA)(1 + νB)K

♦W.L. Hays, Statistics for Psychologists, 1963.

♥G. Keren, C. Lewis, “Partial Omega Squared for ANOVA Designs”, Educational & Psych. Measurement, 39 (1979), 119-128.

ETA-SQUARED OR PARTIAL ETA-SQUARED?

There has been discussion regarding which effect size measure (eta-squared & partial eta-squared) is better for multi-factor ANOVA

– the short answer being it depends on the particular multi-factor design(s) and whether meta-analyses will be performed1,2,3,4.

To play it safe, we shall always report both η2 & η2(·). Ditto for ω2 & ω2
(·).

1J. Cohen, “Eta-Squared and Partial Eta-Squared in Fixed Factor ANOVA Designs”, Edu. & Psy. Meas., 33 (1973), 107-112.

2T.R. Levine, C.R. Hullett, “Eta Squared, Partial Eta Squared, and Misreporting of Effect Size in Communication Research”,

Human Communication Research, 28 (2002), 612-625.

3S. Olejnik, J. Algina, “Generalized Eta and Omega Squared Statistics: Measures of Effect Size for Some Common Research

Designs”, Psychological Methods, 8 (2003), 434-447.

4C.A. Pierce, R.A. Block, H. Aguinis, “Cautionary Note on Reporting Eta-Squared Values from Multifactor ANOVA Designs”,

Educational and Psychological Measurement, 64 (2004), 916-924.
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2F bcrANOVA (POST-HOC COMPARISONS) [DEVORE 11.2]

• 2F bcrANOVA (TUKEY POST-HOC COMPARISONS FOR FACTOR A’S MAIN EFFECT – NO INTERACTION):

Given a 2-factor experiment with I levels of factor A, J levels of factor B, and each group has K > 1 measurements.

Moreover, 2F bcrANOVA accepts HAB
0 and rejects HA

0 at significance level α. [νres := IJ(K − 1)]

Then, to determine which levels of factor A significantly differ:

1. Compute the factor A significant difference width:

wA = q∗I,νres;α ·
√

MSres/(JK)

2. Sort the I factor A level means in ascending order:

x(1)•• ≤ x(2)•• ≤ · · · ≤ x(I)••

3. For each sorted factor A level mean x(i)••:

– If x(i+1)•• 6∈
[
x(i)••, x(i)•• + wA

]
, repeat STEP 3 with next sorted mean.

– Else, underline x(i)•• and all larger means within a distance of wA with new line.

• 2F bcrANOVA (TUKEY POST-HOC COMPARISONS FOR FACTOR B’S MAIN EFFECT – NO INTERACTION):

Given a 2-factor experiment with I levels of factor A, J levels of factor B, and each group has K > 1 measurements.

Moreover, 2F bcrANOVA accepts HAB
0 and rejects HB

0 at significance level α. [νres := IJ(K − 1)]

Then, to determine which levels of factor B significantly differ:

1. Compute the factor B significant difference width:

wB = q∗J,νres;α ·
√

MSres/(IK)

2. Sort the J factor B level means in ascending order:

x•(1)• ≤ x•(2)• ≤ · · · ≤ x•(J)•

3. For each sorted factor B level mean x•(j)•:

– If x•(j+1)• 6∈
[
x•(j)•, x•(j)• + wB

]
, repeat STEP 3 with next sorted mean.

– Else, underline x•(j)• and all larger means within a distance of wB with new line.

2F bcrANOVA (POST-HOC COMPARISONS WHEN THERE’S A SIGNIFICANT INTERACTION):

Post-hoc comparisons when there is a statistically significant interaction (i.e. 2F bcrANOVA rejects HAB
0 ) are far trickier and,

hence, beyond the scope of this course.

Interested readers may consult any of the following:

L.E. Toothaker, Multiple Comparison Procedures, SAGE, 1992. (Ch 5)

P.H. Westfall et al, Multiple Comparisons & Multiple Tests using SAS, SAS Institute, 1999. (§9.2.4)

Y. Hochberg et al, Multiple Comparison Procedures, Wiley, 1987. (§10.5)

G. Keppel, Design and Analysis: A Researcher’s Handbook, Pearson, 1991.

R.J. Boik, “The Analysis of 2-Factor Interactions in Fixed Effects Linear Models”, Journal of Educational Stats., 18 (1993), 1-40.
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EX 11.2.1: The lifetimes of 24 light bulbs, available in two brands and three wattages, were randomized and then measured:

BULB LIFETIME (in years)

WATTAGE: →
BRAND: ↓

60-Watt

(x•1)

75-Watt

(x•2)

100-Watt

(x•3)

TOTAL

(
∑
j

∑
k xijk)

Brand 1 (x1•) 9.23, 7.64, 8.59, 7.66 8.54, 5.98, 8.15, 8.30 1.29, 3.13, 1.42, 3.28 73.21

Brand 2 (x2•) 14.54, 13.77, 15.43, 14.20 10.82, 10.84, 12.86, 13.81 9.65, 9.00, 8.24, 8.61 141.77

TOTAL (
∑
i

∑
k xijk) 91.06 79.30 44.62

∑
i

∑
j

∑
k xijk = 214.98

(a) Formulate this experiment as a 2-factor fixed effects linear model. In this context, what does “fixed effects” assume?

(b) State the appropriate null & alternative hypotheses for factor A, factor B and interaction AB.

(c) Perform a 2-Factor Balanced Completely Randomized ANOVA (2F bcrANOVA) with (α = 0.01) significance level.

To save time and tedium: SStotal = 366.15840, SSres = 18.75875, (and utilize the row & column totals in the table!)

(d) Perform & interpret the appropriate Tukey Complete Pairwise Post-Hoc Comparison.
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EX 11.2.2: The lifetimes of 24 light bulbs, available in two brands and three wattages, were randomized and then measured:

BULB LIFETIME (in years)

WATTAGE: →
BRAND: ↓

60-Watt

(x•1)

75-Watt

(x•2)

100-Watt

(x•3)

TOTAL

(
∑
j

∑
k xijk)

Brand 1 (x1•) 10.78, 9.87, 12.37, 8.38 5.79, 4.35, 7.02, 5.16 2.51, 2.70, 5.05, 2.46 76.44

Brand 2 (x2•) 11.31, 12.63, 11.60, 12.15 16.31, 14.33, 14.66, 15.19 7.73, 8.27, 7.20, 10.86 142.24

TOTAL (
∑
i

∑
k xijk) 89.09 82.81 46.78

∑
i

∑
j

∑
k xijk = 218.68

(a) Formulate this experiment as a 2-factor fixed effects linear model.

(b) State the appropriate null & alternative hypotheses for factor A, factor B and interaction AB.

(c) Perform a 2-Factor Balanced Completely Randomized ANOVA (2F bcrANOVA) with (α = 0.05) significance level.

To save time: SStotal = 402.38170, SSA ≈ 180.40167, SSB ≈ 130.32231, SSAB ≈ 63.58691, SSres = 28.07085

(d) Compute & interpret all the eta-squared & partial eta-squared effect size measures.
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