STANDARD NORMAL DISTRIBUTION [DEVORE 9.1]

• STANDARD NORMAL DISTRIBUTION (DEFINITION):

Notation

	Parameters	(None)				
	Support	$\operatorname{Supp}(Z) = (-\infty, \infty)$				
_	pdf	$f_Z(z) := \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$				
	cdf	$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\xi^{2}/2} d\xi$				
	Mean	$\mathbb{E}[Z] = 0$				
	Variance	$\mathbb{V}[Z] = 1$				

 $Z \sim \text{Normal}(0,1)$ or $Z \sim \text{StdNormal}$

Model(s) (Used mainly for Statistical Inference)

• STANDARD NORMAL DISTRIBUTION (PROPERTIES):

- The standard normal pdf curve is unimodal.
- The standard normal pdf curve is bell-shaped.
- The standard normal pdf curve is symmetric.

• *z*-CUTOFFS (AKA *z* CRITICAL VALUES):

- Value z_{α}^* is a *z*-cutoff (AKA *z* critical value) of std normal distribution such that $\mathbb{P}(Z > z_{\alpha}^*) = \alpha$
- NOTE: Do <u>not</u> confuse z-cutoff z_{α}^* with z percentile z_{α} : $\mathbb{P}(Z \leq z_{\alpha}) = \alpha$
- Lower-tail z-cutoffs can be found from upper-tail z-cutoffs: $z_{1-\alpha}^* = -z_{\alpha}^*$ (this follows since std normal is symmetric)

• STANDARD NORMAL DISTRIBUTION (EXAMPLE PDF PLOT):

 $\textbf{STD NORMAL z-CUTOFFS, z^*_{α}} \qquad \mathbb{P}(Z > z^*_{\alpha}) = \alpha, \quad z^*_{1-\alpha} = -z^*_{\alpha}$

α	0.2	0.1	0.05	0.025	0.02	0.01	0.005	0.001	0.0005
z^*_{lpha}	0.842	1.282	1.645	1.960	2.054	2.326	2.576	3.090	3.291

©2018 Josh Engwer – Revised December 6, 2018

LARGE-SAMPLE *z*-TESTS & *z*-CI'S FOR $\mu_1 - \mu_2$ [DEVORE 9.1]

• A STATISTIC RELATED TO THE STANDARD NORMAL DISTRIBUTION:

Given any two populations with means μ_1, μ_2 and unknown σ_1, σ_2 .

Let $\mathbf{X} := (X_1, \ldots, X_{n_1}) \& \mathbf{Y} := (Y_1, \ldots, Y_{n_2})$ be random samples from the $1^{st} \& 2^{nd}$ populations, respectively.

Moreover, suppose random samples $\mathbf{X} \& \mathbf{Y}$ are independent of each other and their sizes are "large", meaning $n_1, n_2 > 40$.

Then the following statistic has an approximate std normal distribution: $\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \overset{approx}{\sim} \text{StdNormal}$

• LARGE-SAMPLE *z*-TESTS FOR $\mu_1 - \mu_2$:

	Population:	Any Two Populations with unknown	σ_1,σ_2			
		$\mathbf{x} := (x_1, x_2, \cdots, x_{n_1}), \text{ mean } \overline{x}, \text{ std dev } s_1$	$(n_1 > 40)$			
	Realized Samples:	$\mathbf{y} := (y_1, y_2, \cdots, y_{n_2}), \text{ mean } \overline{y}, \text{ std dev } s_2$	$(n_2 > 40)$			
:		Samples $\mathbf{x} \& \mathbf{y}$ are independent of eac	th other			
	Test Statistic Value: $(\overline{x} - \overline{y}) - \delta_0$					
	$W(\mathbf{x},\mathbf{y};\delta_0)$	$z = rac{1}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$				
НҮРОТ	HESIS TEST:	REJECTION REGION AT LVL α :	P-VALUE DETERMINATION:			
$H_0:\mu_1-\mu_2=\delta_0$	vs. $H_A: \mu_1 - \mu_2 > \delta_0$	$z \ge z_{lpha}^*$	P-value $= 1 - \Phi(z)$			
$H_0:\mu_1-\mu_2=\delta_0$	vs. $H_A: \mu_1 - \mu_2 < \delta_0$	$z \leq z_{1-lpha}^*$	P-value $= \Phi(z)$			
$H_0:\mu_1-\mu_2=\delta_0$	vs. $H_A: \mu_1 - \mu_2 \neq \delta_0$	$z \le z_{1-\alpha/2}^*$ or $z \ge z_{\alpha/2}^*$	P-value = $2 \cdot [1 - \Phi(z)]$			

DECISION RULE: If P-value $\leq \alpha$ then reject H_0 in favor of H_A If P-value $> \alpha$ then accept H_0 (i.e. fail to reject H_0)

• LARGE-SAMPLE *z*-CI's FOR $\mu_1 - \mu_2$:

Given any two populations with means μ_1, μ_2 and unknown σ_1, σ_2 .

Let $\mathbf{x} := (x_1, x_2, \cdots, x_{n_1})$ be a sample taken from the 1st population with $n_1 > 40$.

Let $\mathbf{y} := (y_1, y_2, \cdots, y_{n_2})$ be a sample taken from the 2^{nd} population with $n_2 > 40$.

Moreover, suppose samples $\mathbf{x} \& \mathbf{y}$ are independent of each other.

Then the $100(1-\alpha)\%$ large-sample z-CI for $\mu_1 - \mu_2$ is

$$\left((\overline{x} - \overline{y}) - z_{\alpha/2}^* \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \quad (\overline{x} - \overline{y}) + z_{\alpha/2}^* \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \right)$$

— OR WRITTEN MORE COMPACTLY —

$$(\overline{x} - \overline{y}) \pm z_{\alpha/2}^* \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

 $[\]textcircled{C}2018$ Josh Engwer – Revised December 6, 2018

<u>EX 9.1.1</u> A manufacturing plant produces a certain type of brake pad used in big rig trucks.

A sample of 55 day-shift workers showed that the mean # of brake pads produced was 310 with a std dev of 20. A sample of 60 night-shift workers showed that the mean # of brake pads produced was 325 with a std dev of 26.

Assume that the two samples are independent.

Do these samples suggest that the average # brake pads produced by the two shifts differ?

(Use significance level $\alpha = 0.05$)

- (a) State the appropriate null hypothesis H_0 & alternative hypothesis H_A .
- (b) Compute the appropriate z-test statistic value for this hypothesis test.

- (c) Identify the two appropriate z-cutoffs and lookup/compute their values.
- (d) Compute the appropriate P-value using software.
- (e) Using the computed z-cutoffs, render the appropriate decision.
- (f) Using the computed P-value, render the appropriate decision.
- (g) Construct the approximate 95% z-CI for $\mu_1 \mu_2$.

 $[\]textcircled{O}2018$ Josh Engwer – Revised December 6, 2018