EX 9.2.1: A manufacturing plant produces a certain type of brake pad used in big rig trucks.
A sample of 10 day-shift workers showed that the mean $\#$ of brake pads produced was 52 with a std dev of 4.4.
A sample of 13 night-shift workers showed that the mean \# of brake pads produced was 55 with a std dev of 4.6.
Assume that the two samples are independent and the two corresponding populations are normally distributed.
Do these samples suggest that the average \# brake pads produced by the two shifts differ?
(Use significance level $\alpha=0.01$)
(a) State the appropriate null hypothesis $H_{0} \&$ alternative hypothesis H_{A}.

> Let $\mu_{1} \equiv($ Mean \# of brake pads produced by day shift Let $\mu_{2} \equiv($ Mean \# of brake pads produced by night shift) $\Rightarrow \quad \Longrightarrow \begin{array}{ll}H_{0}: & \mu_{1}=\mu_{2} \\ H_{A}: & \mu_{1} \neq \mu_{2}\end{array} ~ \Longrightarrow \quad \begin{array}{ll}H_{0}: & \mu_{1}-\mu_{2}=0 \\ H_{A}: & \mu_{1}-\mu_{2} \neq 0\end{array}$
(b) Compute the independent t-test statistic value for this hypothesis test.

$$
t=\frac{(\bar{x}-\bar{y})-\delta_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{(52-55)-0}{\sqrt{\frac{4.4^{2}}{10}+\frac{4.6^{2}}{13}}} \approx-\mathbf{1 . 5 8 9 1 7}
$$

(c) Identify the two appropriate independent t-cutoffs and lookup/compute their values.

First, determine the appropriate \# degrees of freedom:

$$
\begin{aligned}
& \nu^{*}=\left\lfloor\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(s_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}}\right\rfloor=\left\lfloor\frac{\left(\frac{4.4^{2}}{10}+\frac{4.6^{2}}{13}\right)^{2}}{\frac{\left(4.4^{2} / 10\right)^{2}}{10-1}+\frac{\left(4.6^{2} / 13\right)^{2}}{13-1}}\right\rfloor \approx\left\lfloor\frac{12.69990286}{0.637236965}\right\rfloor=\lfloor 19.92963929\rfloor=19 \\
& t_{\nu^{*} ; \alpha / 2}^{*}=t_{19 ; 0.005}^{*} \stackrel{\text { LOOKUP }}{\approx} \mathbf{2 . 8 6 1}^{t_{\nu^{*} ; 1-\alpha / 2}^{*}} \stackrel{\text { SYM }}{=}-t_{\nu^{*} ; \alpha / 2}^{*}=-t_{19 ; 0.005}^{*} \approx-\mathbf{- 2 . 8 6 1}
\end{aligned}
$$

(d) Compute the appropriate P -value using software.

P-value $=2 \cdot\left[1-\Phi_{t}\left(|t| ; \nu^{*}\right)\right]=2 \cdot\left[1-\Phi_{t}(1.58917 ; \nu=19)\right] \stackrel{S W}{\approx} 2 \cdot[1-0.9357]=0.1286$
(e) Using the computed independent t-cutoffs, render the appropriate decision.

Since $t_{\nu^{*} ; 1-\alpha / 2}^{*}<t<t_{\nu^{*} ; \alpha / 2}^{*}$, Accept (or Fail to Reject) H_{0}
(f) Using the computed P-value, render the appropriate decision.

Since P-value $\approx 0.1286>0.01=\alpha, \quad$ Accept (or Fail to Reject) H_{0}
There is not enough compelling evidence from the data to conclude that the avg \# of brake pads produced by the two shifts differ.
(g) Construct the approximate 99% independent t-CI for $\mu_{1}-\mu_{2}$.

$$
(\bar{x}-\bar{y}) \pm t_{\nu^{*} ; \alpha / 2}^{*} \cdot \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \Longrightarrow(52-55) \pm \mathbf{2 . 8 6 1} \cdot \sqrt{\frac{4.4^{2}}{10}+\frac{4.6^{2}}{13}} \Longrightarrow-3 \pm 5.4009 \Longrightarrow(-\mathbf{8 . 4 0 0 9}, \mathbf{2 . 4 0 0 9})
$$

A negative sign in the CI indicates that the night shift produces more brake pads on avg than the day shift.
A positive sign in the CI indicates that the day shift produces more brake pads on avg than the night shift.

Notice that the CI contains zero, which is expected since H_{0} was accepted.

A sample of 10 day-shift workers showed that the mean $\#$ of brake pads produced was 52 with a std dev of 4.4.
A sample of 13 night-shift workers showed that the mean \# of brake pads produced was 55 with a std dev of 4.6.
Assume that the two samples are independent and the two corresponding populations are normally distributed.
Do these samples suggest that the average \# brake pads produced by the two shifts differ?
(Use significance level $\alpha=0.01$)
(a) State the appropriate null hypothesis H_{0} \& alternative hypothesis H_{A}.

$$
\begin{aligned}
& \text { Let } \mu_{1} \equiv \text { (Mean \# of brake pads produced by day shift) } \\
& \text { Let } \mu_{2} \equiv \text { (Mean \# of brake pads produced by night shift) }
\end{aligned} \Longrightarrow \quad \Rightarrow \begin{aligned}
& H_{0}: \quad \mu_{1}=\mu_{2} \\
& H_{A}: \\
& \mu_{1} \neq \mu_{2}
\end{aligned} ~ \Longrightarrow \begin{array}{ll}
H_{0}: & \mu_{1}-\mu_{2}=0 \\
H_{A}: & \mu_{1}-\mu_{2} \neq 0
\end{array}
$$

(b) Compute the pooled t-test statistic value for this hypothesis test.
$1^{\text {st }}$, compute pooled sample variance: $s_{\text {pool }}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{(10-1) \cdot 4.4^{2}+(13-1) \cdot 4.6^{2}}{10+13-2} \approx 20.38857$

$$
t_{\text {pool }}=\frac{(\bar{x}-\bar{y})-\delta_{0}}{\sqrt{s_{\text {pool }}^{2} \cdot\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{(52-55)-0}{\sqrt{20.38857 \cdot\left(\frac{1}{10}+\frac{1}{13}\right)}} \approx-\mathbf{1 . 5 7 9 6}
$$

(c) Identify the two appropriate pooled t-cutoffs and lookup/compute their values.

$$
\begin{aligned}
& \nu_{\text {pool }}=n_{1}+n_{2}-2=10+13-2=21 \\
& t_{\nu_{\text {pool } ; \alpha / 2}}^{*}=t_{21 ; 0.005}^{*} \stackrel{\text { LOOKUP }}{\approx} \mathbf{2 . 8 3 1}^{\text {L. }} \quad t_{\nu_{p o o l} ; 1-\alpha / 2}^{*}=-t_{\nu_{p o o l} ; \alpha / 2}^{*} \stackrel{\text { LOOKUP }}{\approx}-\mathbf{- 2 . 8 3 1}
\end{aligned}
$$

(d) Compute the appropriate P -value using software.

$$
\text { P-value }=2 \cdot\left[1-\Phi_{t}\left(\left|t_{\text {pool }}\right| ; \nu_{p o o l}\right)\right]=2 \cdot\left[1-\Phi_{t}(1.5796 ; \nu=21)\right] \stackrel{S W}{\approx} 2 \cdot[1-0.9354]=\mathbf{0 . 1 2 9 2}
$$

(e) Using the computed pooled t-cutoffs, render the appropriate decision.

$$
\text { Since } t_{\nu_{p o o l} ; 1-\alpha / 2}^{*}<t_{\text {pool }}<t_{\nu_{p o o l} ; \alpha / 2}^{*}, \text { Accept (or Fail to Reject) } H_{0}
$$

(f) Using the computed P-value, render the appropriate decision.

Since P-value $\approx 0.1292>0.01=\alpha, \quad$ Accept (or Fail to Reject) H_{0}
There is not enough compelling evidence from the data to conclude that the avg \# of brake pads produced by the two shifts differ.
(g) Construct the 99% pooled t-CI for $\mu_{1}-\mu_{2}$.

$$
\begin{aligned}
& (\bar{x}-\bar{y}) \pm t_{\nu_{p o o l} ; \alpha / 2}^{*} \cdot \sqrt{s_{\text {pool }}^{2} \cdot\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \Longrightarrow(52-55) \pm \mathbf{2 . 8 3 1} \cdot \sqrt{20.38857 \cdot\left(\frac{1}{10}+\frac{1}{13}\right)} \\
& \Longrightarrow-3 \pm 5.3768 \Longrightarrow(-\mathbf{8 . 3 7 6 8}, \mathbf{2 . 3 7 6 8})
\end{aligned}
$$

A negative sign in the CI indicates that the night shift produces more brake pads on avg than the day shift.
A positive sign in the CI indicates that the day shift produces more brake pads on avg than the night shift.
Notice that the CI contains zero, which is expected since H_{0} was accepted.

