EX 9.5.1: A manufacturing plant produces a certain type of brake pad used in big rig trucks.
A sample of 11 day-shift workers showed that the mean \# of brake pads produced was 56 with a std dev of 4.2.
A sample of 16 night-shift workers showed that the mean \# of brake pads produced was 48 with a std dev of 7.1.
Assume that the two samples are independent and the two corresponding populations are normally distributed.
Does the data suggest differing variability in the \# brake pads produced by day-shift workers and night-shift workers?
(Use significance level $\alpha=0.01$)
(a) Identify σ_{+}, σ_{-}and state the appropriate null hypothesis $H_{0} \&$ alternative hypothesis H_{A}.

Identify \& subscript the relevant sample variables, dof's and pop. std dev of smaller-std dev sample with minus signs.
Identify \& subscript the relevant sample variables, dof's and pop. std dev of larger-std dev sample with plus signs.

$$
\begin{aligned}
& s_{+}=\max \{4.2,7.1\}=7.1 \quad \Longrightarrow \quad n_{+}=16 \quad \Longrightarrow \quad \nu_{+}=n_{+}-1=15 \\
& s_{-}=\min \{4.2,7.1\}=4.2 \quad \Longrightarrow \quad n_{-}=11 \quad \Longrightarrow \quad \nu_{-}=n_{-}-1=10
\end{aligned}
$$

$$
\therefore \quad \begin{array}{ll}
\sigma_{+} \equiv(\text { Standard deviation of night-shift brake pad production }) \\
\sigma_{-} \equiv(\text { Standard deviation of day-shift brake pad production })
\end{array} \Longrightarrow \begin{aligned}
& H_{0}: \sigma_{+}=\sigma_{-} \\
& H_{A}: \sigma_{+} \neq \sigma_{-}
\end{aligned}
$$

(b) Compute the two F-test statistic values, $f_{+} \& f_{-}$, for this hypothesis test.

$$
f_{-}=\frac{s_{-}^{2}}{s_{+}^{2}}=\frac{4.2^{2}}{7.1^{2}} \approx 0.34993 \quad f_{+}=\frac{s_{+}^{2}}{s_{-}^{2}}=\frac{7.1^{2}}{4.2^{2}} \approx 2.85771
$$

(c) Identify the two appropriate F-cutoffs, $f_{\nu_{+}, \nu_{-} ; 1-\alpha / 2}^{*} \& f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}$, and lookup their table values.

$$
f_{\nu_{+}, \nu_{-} ; 1-\alpha / 2}^{*}=\frac{1}{f_{\nu_{-}, \nu_{+} ; \alpha / 2}^{*}}=\frac{1}{f_{10,15 ; 0.005}^{*}} \stackrel{\text { LOOKUP }}{\approx} \frac{1}{4.424} \approx \mathbf{0 . 2 2 6} \quad f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}=f_{15,10 ; 0.005}^{*} \stackrel{\text { LOOKUP }}{\approx} \mathbf{5 . 4 7 1}
$$

(d) Use software to compute the appropriate P -value.

$$
\begin{aligned}
\text { P-value } & =\Phi_{F}\left(f_{-} ; \nu_{-}, \nu_{+}\right)+\left[1-\Phi_{F}\left(f_{+} ; \nu_{+}, \nu_{-}\right)\right] \\
& =\Phi_{F}(0.34993 ; 10,15)+\left[1-\Phi_{F}(2.85771 ; 15,10)\right] \\
& \stackrel{S W}{\approx} 0.04931+[1-0.95069]=\mathbf{0 . 0 9 8 6 2}
\end{aligned}
$$

(e) Using the computed F-cutoffs, render the appropriate decision.

$$
\begin{aligned}
& \text { Observe that } f_{-} \approx 0.34993>0.226 \approx f_{\nu_{+}, \nu_{-} ; 1-\alpha / 2}^{*} \Longrightarrow f_{-}>f_{\nu_{+}, \nu_{-} ; 1-\alpha / 2}^{*} \Longrightarrow f_{-} \not \leq f_{\nu_{+}, \nu_{-} ; 1-\alpha / 2}^{*} \\
& \text { Observe that } f_{+} \approx 2.85771<5.471 \approx f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*} \Longrightarrow f_{+}<f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*} \Longrightarrow f_{+} \nsupseteq f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*} \\
& \therefore \text { Since } f_{-} \not \leq f_{\nu_{+}, \nu_{-} ; 1-\alpha / 2}^{*} \text { and } f_{+} \nsupseteq f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}, \text { Accept } H_{0}
\end{aligned}
$$

There is not enough compelling evidence from the data to conclude that the variability in brake pad production differs between the day shift and night shift.
(f) Using the computed P-value, render the appropriate decision.

$$
\text { Since P-value } \approx 0.09862>0.01=\alpha, \quad \text { Accept } H_{0}
$$

(g) Construct the $99 \% F$-CI for $\sigma_{+}^{2} / \sigma_{-}^{2}$.

$$
\left(\frac{f_{-}}{f_{\nu_{-}, \nu_{+} ; \alpha / 2}^{*}}, \frac{f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}}{f_{+}}\right)=\left(\frac{s_{-}^{2} / s_{+}^{2}}{f_{\nu_{-}, \nu_{+} ; \alpha / 2}^{*}}, \frac{f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}}{s_{+}^{2} / s_{-}^{2}}\right)=\left(\frac{4.2^{2} / 7.1^{2}}{4.424}, \frac{5.471}{7.1^{2} / 4.2^{2}}\right)=(\mathbf{0 . 0 7 9 1}, 1.9145)
$$

Sanity Check: Notice that the F-CI contains the number one, which is expected since H_{0} was accepted.
(h) Construct the $99 \% F$-CI for σ_{+} / σ_{-}.

$$
\left(\sqrt{\frac{f_{-}}{f_{\nu_{-}, \nu_{+} ; \alpha / 2}^{*}}}, \sqrt{\frac{f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}}{f_{+}}}\right)=\left(\sqrt{\frac{s_{-}^{2} / s_{+}^{2}}{f_{\nu_{-}, \nu_{+} ; \alpha / 2}^{*}}}, \sqrt{\frac{f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}}{s_{+}^{2} / s_{-}^{2}}}\right)=\left(\sqrt{\frac{4.2^{2} / 7.1^{2}}{4.424}}, \sqrt{\frac{5.471}{7.1^{2} / 4.2^{2}}}\right)=(\mathbf{(0 . 2 8 1 2 , 1 . 3 8 3 7)}
$$

Sanity Check: Notice that the F-CI contains the number one, which is expected since H_{0} was accepted.

EX 9.5.2: A manufacturing plant produces a certain type of brake pad used in big rig trucks.
A sample of 21 day-shift workers showed that the mean \# of brake pads produced was 58 with a variance of 95.45 .
A sample of 31 night-shift workers showed that the mean $\#$ of brake pads produced was 63 with a variance of 26.58.
Assume that the two samples are independent and the two corresponding populations are normally distributed.
Does the data suggest differing variability in the \# brake pads produced by day-shift workers and night-shift workers?
(Use significance level $\alpha=0.05$)
(a) Identify $\sigma_{+}^{2}, \sigma_{-}^{2}$ and state the appropriate null hypothesis $H_{0} \&$ alternative hypothesis H_{A}.

Identify \& subscript the relevant sample variables, dof's and pop. variance of larger-variance sample with plus signs.
Identify \& subscript the relevant sample variables, dof's and pop. variance of smaller-variance sample with minus signs.

$$
\begin{aligned}
& s_{+}^{2}=\max \{95.45,26.58\}=95.45 \quad \Longrightarrow \quad n_{+}=21 \quad \Longrightarrow \quad \nu_{+}=n_{+}-1=20 \\
& s_{-}^{2}=\min \{95.45,26.58\}=26.58 \quad \Longrightarrow \quad n_{-}=31 \quad \Longrightarrow \quad \nu_{-}=n_{-}-1=30
\end{aligned}
$$

$$
\therefore \quad \begin{array}{ll}
\sigma_{+}^{2} \equiv(\text { Variance of day-shift brake pad production }) \\
\sigma_{-}^{2} \equiv(\text { Variance of night-shift brake pad production })
\end{array} \Longrightarrow \begin{gathered}
H_{0}: \sigma_{+}^{2}=\sigma_{-}^{2} \\
H_{A}: \sigma_{+}^{2} \neq \sigma_{-}^{2}
\end{gathered}
$$

(b) Compute the two F-test statistic values, $f_{+} \& f_{-}$, for this hypothesis test.

$$
f_{-}=\frac{s_{-}^{2}}{s_{+}^{2}}=\frac{26.58}{95.45} \approx \mathbf{0 . 2 7 8 4 7} \quad f_{+}=\frac{s_{+}^{2}}{s_{-}^{2}}=\frac{95.45}{26.58} \approx \mathbf{3 . 5 9 1 0 5}
$$

(c) Identify the two appropriate F-cutoffs, $f_{\nu_{+}, \nu_{-} ; 1-\alpha / 2}^{*} \& f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}$, and lookup their table values.

$$
f_{\nu_{+}, \nu_{-} ; 1-\alpha / 2}^{*}=\frac{1}{f_{\nu_{-}, \nu_{+} ; \alpha / 2}^{*}}=\frac{1}{f_{30,20 ; 0.025}^{*}} \stackrel{\text { LOOKUP }}{\approx} \frac{1}{2.349} \approx \mathbf{0 . 4 2 6} \quad f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}=f_{20,30 ; 0.025}^{*} \stackrel{\text { LOOKUP }}{\approx}
$$

(d) Use software to compute the appropriate P -value.

$$
\begin{aligned}
\mathrm{P} \text {-value } & =\Phi_{F}\left(f_{-} ; \nu_{-}, \nu_{+}\right)+\left[1-\Phi_{F}\left(f_{+} ; \nu_{+}, \nu_{-}\right)\right] \\
& =\Phi_{F}(0.27847 ; 30,20)+\left[1-\Phi_{F}(3.59105 ; 20,30)\right] \\
& \stackrel{S W}{\approx} 0.00079787+[1-0.9992021]=0.001596
\end{aligned}
$$

(e) Using the computed F-cutoffs, render the appropriate decision.

Observe that $f_{-} \approx 0.27847<0.426 \approx f_{\nu_{+}, \nu_{-} ; 1-\alpha / 2}^{*} \Longrightarrow f_{-} \leq f_{\nu_{+}, \nu_{-} ; 1-\alpha / 2}^{*}$
Observe that $f_{+} \approx 3.59105>2.195 \approx f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*} \Longrightarrow f_{+} \geq f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}$
\therefore Since $f_{-} \leq f_{\nu_{+}, \nu_{-} ; 1-\alpha / 2}^{*}$ and $f_{+} \geq f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}$, Reject H_{0} in favor of H_{A}
The sample evidence is compelling enough to conclude that it's plausible that the variability in brake pad production differs between the day shift and night shift.
(f) Using the computed P-value, render the appropriate decision.

$$
\text { Since P-value } \approx 0.001596<0.05=\alpha, \text { Reject } H_{0} \text { in favor of } H_{A}
$$

(g) Construct the $95 \% F$-CI for $\sigma_{+}^{2} / \sigma_{-}^{2}$.

$$
\left(\frac{f_{-}}{f_{\nu_{-}, \nu_{+} ; \alpha / 2}^{*}}, \frac{f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}}{f_{+}}\right)=\left(\frac{s_{-}^{2} / s_{+}^{2}}{f_{\nu_{-}, \nu_{+} ; \alpha / 2}^{*}}, \frac{f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}}{s_{+}^{2} / s_{-}^{2}}\right)=\left(\frac{26.58 / 95.45}{2.349}, \frac{2.195}{95.45 / 26.58}\right)=(\mathbf{0 . 1 1 8 5 , 0 . 6 1 1 2})
$$

Sanity Check: Notice that the F-CI does not contain the number one, which is expected since H_{0} was rejected.
(h) Construct the $95 \% F$-CI for σ_{+} / σ_{-}.

$$
\left(\sqrt{\frac{f_{-}}{f_{\nu_{-}, \nu_{+} ; \alpha / 2}^{*}}}, \sqrt{\frac{f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}}{f_{+}}}\right)=\left(\sqrt{\frac{s_{-}^{2} / s_{+}^{2}}{f_{\nu_{-}, \nu_{+} ; \alpha / 2}^{*}}}, \sqrt{\frac{f_{\nu_{+}, \nu_{-} ; \alpha / 2}^{*}}{s_{+}^{2} / s_{-}^{2}}}\right)=\left(\sqrt{\frac{26.58 / 95.45}{2.349}}, \sqrt{\frac{2.195}{95.45 / 26.58}}\right)=(\mathbf{0 . 3 4 4 3 , \mathbf { 0 . 7 8 1 8 })}
$$

Sanity Check: Notice that the F-CI does not contain the number one, which is expected since H_{0} was rejected.

