CHI-SQUARE DISTRIBUTION (MOTIVATION):

Typical errors are distributed as $Normal(\mu, \sigma^2)$.

Standardized errors are distributed as N(0,1).

If $Z_1, \dots, Z_n \stackrel{IID}{\sim} N(0,1)$, then their sum of squares $\sum_k Z_k^2$ is of interest...

...but how is this sum of squares of standard normal rv's distributed?

χ_1^2 DISTRIBUTION FROM STANDARD NORMAL CDF (χ_1^2 THEOREM – CHISQ1THM):

$$Z \sim N(0,1) \implies Y := Z^2 \sim \chi_1^2 \text{ where } f_Y(y) = \frac{1}{\sqrt{2\pi}} y^{-1/2} e^{-y/2} = \frac{y^{1/2-1} e^{-y/2}}{2^{1/2} \cdot \Gamma(1/2)} \leftarrow \Gamma_{1/2,2} \text{ pdf}$$

This distribution of Z^2 is called the **chi-square distribution with one degree of freedom**.

PROOF:

$$\frac{Z \sim N(0,1)}{\Omega_Z = (-\infty,\infty)} \implies f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \implies \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-t^2/2} dt$$

Apply change of random variables (CRV): Let $Y := Z^2$

$$F_Y(y) = \mathbb{P}\left[Y \leq y\right] \stackrel{CRV}{=} \mathbb{P}\left[Z^2 \leq y\right] = \mathbb{P}\left[-\sqrt{y} \leq Z \leq \sqrt{y}\right] = \mathbb{P}\left[Z \leq \sqrt{y}\right] - \mathbb{P}\left[Z \leq -\sqrt{y}\right]$$

$$\stackrel{N(0,1)}{=} \Phi(\sqrt{y}) - \Phi(-\sqrt{y}) = \int_{-\infty}^{\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt - \int_{-\infty}^{-\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

$$\stackrel{SYMI}{=} 2 \cdot \int_{0}^{\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} \ dt \stackrel{CV}{=} 2 \cdot \int_{0}^{y} \frac{1}{\sqrt{2\pi}} e^{-x/2} \cdot \frac{1}{2\sqrt{x}} \ dx = \int_{0}^{y} \frac{1}{\sqrt{2\pi}} x^{-1/2} e^{-x/2} \ dx$$

(CV): Let
$$x := t^2 \implies dx = 2t \ dt \implies dt = \frac{1}{2\sqrt{x}} \ dx \implies \begin{cases} x(\sqrt{y}) = (\sqrt{y})^2 = y \\ x(0) = (0)^2 = 0 \end{cases}$$

$$\begin{array}{ccc} Z \sim N(0,1) \\ \Omega_Z = (-\infty,\infty) \end{array} \implies f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \implies \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-t^2/2} \ dt \end{array}$$

Change of random variables (CRV): Let $Y := Z^2$

$$\implies$$
 cdf of Y is $F_Y(y) = \int_0^y \frac{1}{\sqrt{2\pi}} x^{-1/2} e^{-x/2} dx = \int_0^y \frac{1}{2^{1/2} \cdot \Gamma(1/2)} x^{1/2-1} e^{-x/2} dx$

Limits of integration and integrand for cdf of $Y \implies \Omega_Y = (0, \infty)$

$$\implies$$
 pdf of Y is $f_Y(y) = \frac{1}{2^{1/2} \cdot \Gamma(1/2)} y^{1/2-1} e^{-y/2}$ which is the pdf of Gamma($\alpha = 1/2, \beta = 2$)

$$\begin{array}{ccc} & Z \sim N(0,1) & \Longrightarrow & Y := Z^2 \sim \chi_1^2 \\ & \Omega_Z = (-\infty,\infty) & \Longrightarrow & \Omega_Y = (0,\infty) \end{array} \quad \Box$$

R.V. Hogg, A.T. Craig, Introduction to Mathematical Statistics, 5th Ed, Prentice Hall, 1995. (§6.6)

R.J. Larsen, M.L. Marx, An Intro to Mathematical Statistics..., 2nd Ed, Prentice Hall, 1986. (§7.5)

A. Hald, Statistical Theory with Engineering Applications, Wiley, 1952. (§10.4)

DEGREES OF FREEDOM (GENERAL MOTIVATION):

"Suppose you are asked to write 3 numbers with no restrictions upon them. You have complete freedom of choice in regard to all 3. There are 3 degrees of freedom." †

"Now suppose you are asked to write 3 numbers with the restriction that their sum is to be some particular value, say 20. You cannot now choose all 3 freely, but as soon as 2 have been chosen the third is determined. Your choices are governed by the necessary relation $X_1 + X_2 + X_3 = 20$. In this situation there are only 2 degrees of freedom. The number of variables is 3, but the number of restrictions upon them is 1, and the number of 'free' variables, or independent choices, is 3 - 1 = 2."

"Now suppose you are asked to write 5 numbers such that their sum is 30 and also such that the sum of the first two is 18. There are 5 variables but you do not have freedom of choice with respect to all 5. You cannot write 5 numbers arbitrarily and have them conform to the 2 restrictions that:

$$X_1 + X_2 = 18$$
 and $X_1 + X_2 + X_3 + X_4 + X_5 = 30$

As soon as you select X_1 , then $X_2 = 18 - X_1$ and is completely determined. Since $X_3 + X_4 + X_5 = 30 - 18 = 12$, only two of the numbers, X_3 , X_4 , and X_5 , can be freely chosen. As one of the numbers X_1 and X_2 can be freely chosen there are 3 free choices. The number of degrees of freedom is n = 5 - 2 = 3."

"In every statistical problem in which degrees of freedom are involved it is necessary to determine the number of **free** variables by first noting the total number of variables and reducing that number by the number of **independent restrictions** upon them. In the preceding paragraph, for instance, one might think there are 3 restrictions, namely:

$$X_1 + X_2 = 18$$
 $X_3 + X_4 + X_5 = 12$ $X_1 + X_2 + X_3 + X_4 + X_5 = 30$

However only two of these are independent, since any one of them can be deduced from the other two." †

[†]H.M. Walker, J. Lev, Statistical Inference, Henry Holt and Company, 1953. (Ch 4)

CHI-SQUARE DISTRIBUTION (MOTIVATION REVISITED):

Typical errors are distributed as Normal(μ , σ^2).

Standardized errors are distributed as N(0,1).

If $Z_1, \dots, Z_n \stackrel{IID}{\sim} N(0,1)$, then their sum of squares $\sum_k Z_k^2$ is of interest...

...but how is this sum of squares of standard normal rv's distributed?

Since Z_1, \dots, Z_n are all independent, there are no constraints imposed, so they are n degrees of freedom.

$$\sum_k Z_k^2 \sim \chi_n^2$$

(chi-square with n degrees of freedom)

ADDING TWO RANDOM VARIABLES (SHEARING SUM MAPPING):

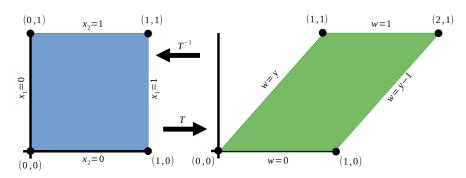
$$T: \left\{ \begin{array}{ccc} Y & := & X_1 + X_2 \\ W & := & X_2 \end{array} \right. \iff T^{-1}: \left\{ \begin{array}{ccc} X_1 & := & Y - W \\ X_2 & := & W \end{array} \right.$$

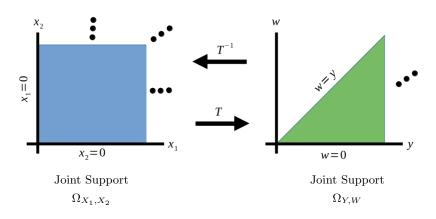
(x_1,x_2)	$(y,w) = T(x_1, x_2)$	$(x_1, x_2) = T^{-1}(y, w)$
(0,0)	T(0,0) = (0+0,0) = (0,0)	$T^{-1}(0,0) = (0-0,0) = (0,0)$
(1,0)	T(1,0) = (1+0,0) = (1,0)	$T^{-1}(1,0) = (1-0,0) = (1,0)$
(0,1)	T(0,1) = (0+1,1) = (1,1)	$T^{-1}(1,1) = (1-1,1) = (0,1)$
(1,1)	T(1,1) = (1+1,1) = (2,1)	$T^{-1}(2,1) = (2-1,1) = (1,1)$

Jacobian of inverse mapping
$$J_{T^{-1}} \equiv J = \left[\begin{array}{cc} \frac{\partial X_1}{\partial Y} & \frac{\partial X_1}{\partial W} \\ \frac{\partial X_2}{\partial Y} & \frac{\partial X_2}{\partial W} \end{array} \right] = \left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array} \right] \implies |J| \equiv \det(J) \stackrel{2 \times 2}{=} (1)(1) - (-1)(0) = 1$$

Jacobian equals one meaning the image of this shearing sum mapping of the unit square (with unit area)...

...is the parallelogram also with the same unit area.





$$\begin{array}{ll} \Omega_{Y,W} \text{ is V-simple } &\Longrightarrow \Omega_1^V = \Omega_{Y,W} \\ \text{Top BC } & \overline{\partial} \Omega_1^V = \{(y,w): \ w = y\} \\ \text{Btm BC } & \underline{\partial} \Omega_1^V = \{(y,w): \ w = 0\} \end{array}$$

 χ^2_{2k} **PATTERN:** (See the slidedeck for derivations of χ^2_2 , χ^2_4 , χ^2_6 .)

CHISQ RV	PDF SIMPLIFIED	PDF GAMMA FORM	KEY INTEGRAL
$Y \sim \chi_2^2$	$\frac{1}{2}e^{-y/2}$	$\frac{y^{2/2-1}e^{-y/2}}{2^{2/2}\cdot\Gamma(2/2)}$	$\int_0^{\pi/2} \sin^0 \theta \ d\theta = \frac{\pi}{2}$
$Y \sim \chi_4^2$	$\frac{1}{4}ye^{-y/2}$	$\frac{y^{4/2-1}e^{-y/2}}{2^{4/2}\cdot\Gamma(4/2)}$	$\int_0^{\pi/2} \sin^2 \theta \ d\theta = \frac{\pi}{4}$
$Y \sim \chi_6^2$	$\frac{1}{16}y^2e^{-y/2}$	$\frac{y^{6/2-1}e^{-y/2}}{2^{6/2}\cdot\Gamma(6/2)}$	$\int_0^{\pi/2} \sin^4 \theta \ d\theta = \frac{3\pi}{16}$
:	:	:	÷

$$\int_0^{\pi/2} \sin^{2k} \theta \ d\theta = \frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma\left(k + \frac{1}{2}\right)}{\Gamma(k+1)} = \frac{(1)(3)(5)\cdots(2k-1)}{(2)(4)(6)\cdots(2k)} \cdot \frac{\pi}{2}, \quad k \in \mathbb{Z}_+$$

$$\int_0^{\pi/2} \sin^{2k-2} \theta \ d\theta = \frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma\left(k - \frac{1}{2}\right)}{\Gamma(k)} = \frac{(1)(3)(5)\cdots(2k-3)}{(2)(4)(6)\cdots(2k-2)} \cdot \frac{\pi}{2}, \quad k \in \mathbb{Z}_+$$

H.B. Dwight, Tables and Integrals and Other Math. Data, 4th Ed, 1961. (Ch12, entry 858.44)

B.O. Peirce, R.M. Foster, A Short Table of Integrals, 4th Ed, 1956. (Part II, entry 498)

 χ^2_{2k+1} **PATTERN:** (See the slidedeck for derivations of $\chi^2_3,~\chi^2_5,~\chi^2_7$.)

CHISQ RV	PDF SIMPLIFIED	PDF GAMMA FORM	KEY INTEGRAL
$Y \sim \chi_3^2$	$\frac{1}{\sqrt{2\pi}}y^{1/2}e^{-y/2}$	$\frac{y^{3/2-1}e^{-y/2}}{2^{3/2}\cdot\Gamma(3/2)}$	$\int_0^{\pi/2} \sin\theta \ d\theta = 1$
$Y \sim \chi_5^2$	$\frac{1}{3\sqrt{2\pi}}y^{3/2}e^{-y/2}$	$\frac{y^{5/2-1}e^{-y/2}}{2^{5/2}\cdot\Gamma(5/2)}$	$\int_0^{\pi/2} \sin^3 \theta \ d\theta = \frac{2}{3}$
$Y \sim \chi_7^2$	$\frac{1}{15\sqrt{2\pi}}y^{5/2}e^{-y/2}$	$\frac{y^{7/2-1}e^{-y/2}}{2^{7/2}\cdot\Gamma(7/2)}$	$\int_0^{\pi/2} \sin^5 \theta \ d\theta = \frac{8}{15}$
:	:	i:	:

$$\int_0^{\pi/2} \sin^{2k+1}\theta \ d\theta = \frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma(k+1)}{\Gamma((k+1) + \frac{1}{2})} = \frac{(2)(4)(6)\cdots(2k)}{(3)(5)(7)\cdots(2k+1)}, \ k \in \mathbb{Z}_+$$

$$\int_0^{\pi/2} \sin^{2k-1}\theta \ d\theta = \frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma(k)}{\Gamma(k + \frac{1}{2})} = \frac{(2)(4)(6)\cdots(2k-2)}{(3)(5)(7)\cdots(2k-1)}, \ k \in \mathbb{Z}_+$$

 $\mbox{H.B. Dwight, Tables and Integrals and Other Math. Data, 4^{th} Ed, 1961. (Ch12, entry $858.44) } \\$

B.O. Peirce, R.M. Foster, A Short Table of Integrals, 4th Ed, 1956. (Part II, entry 498)

χ^2_{2k} FROM χ^2_{2k-1} & χ^2_1 PDF'S (χ^2 EVEN THEOREM – CHISQETHM):

$$X_1, X_2 \stackrel{IND}{\sim} \chi_1^2, \chi_{2k-1}^2 \implies Y := X_1 + X_2 \sim \chi_{2k}^2 \text{ where } f_Y(y) = \frac{y^{(2k)/2 - 1} e^{-y/2}}{2^{(2k)/2} \cdot \Gamma((2k)/2)}$$

This distribution of Y is called the **chi-square distribution with** (2k) **degrees of freedom**.

PROOF:

$$\text{pdf's} \ \ f_{X_1}(x_1) = \frac{x_1^{-1/2}e^{-x_1/2}}{2^{1/2} \cdot \Gamma(1/2)}, \ \ f_{X_2}(x_2) = \frac{x_2^{k-3/2}e^{-x_2/2}}{2^{k-1/2} \cdot \Gamma(k-1/2)} \implies \text{Supports } \Omega_{X_1} = \Omega_{X_2} = (0, \infty)$$

Joint pdf
$$f_{X_1,X_2}(x_1,x_2) \stackrel{IND}{=} f_{X_1}(x_1) \cdot f_{X_2}(x_2) = \frac{x_1^{-1/2} x_2^{k-3/2} e^{-(x_1+x_2)/2}}{2^{k-1/2} \cdot 2^{1/2} \cdot \Gamma(k-1/2) \cdot \Gamma(1/2)}$$

Joint Support
$$\Omega_{X_1,X_2} \stackrel{IND}{=} \Omega_{X_1} \times \Omega_{X_2} = \{(x_1,x_2) : x_1 \in \Omega_{X_1}, x_2 \in \Omega_{X_2}\} = \{(x_1,x_2) : x_1 > 0, x_2 > 0\}$$

Change of random variables (CRV):

$$\begin{array}{ccc} Y := X_1 + X_2 & \iff & X_1 = Y - W \\ W := X_2 & \iff & X_2 = W & \implies J = \left[\begin{array}{ccc} \frac{\partial X_1}{\partial Y} & \frac{\partial X_1}{\partial W} \\ \frac{\partial X_2}{\partial Y} & \frac{\partial X_2}{\partial W} \end{array} \right] = \left[\begin{array}{ccc} 1 & -1 \\ 0 & 1 \end{array} \right] \implies |J| = 1$$

$$\implies \text{Joint pdf } f_{Y,W}(y,w) \stackrel{CRV}{=} f_{X_1,X_2}(y-w,w) \cdot |J| = \frac{(y-w)^{-1/2} w^{k-3/2} e^{-y/2}}{2^{k-1/2} \cdot 2^{1/2} \cdot \Gamma(k-1/2) \cdot \Gamma(1/2)}$$

$$\implies$$
 Joint Support $\Omega_{Y,W} = \{(y,w) : 0 < y < \infty, \ 0 < w < y\}$

$$\implies \text{Marginal pdf} \ \ f_Y(y) = \int_{\underline{\partial}\Omega_1^Y}^{\overline{\partial}\Omega_1^Y} f_{Y,W}(y,w) \ dw = \int_0^y \frac{(y-w)^{-1/2} w^{k-3/2} e^{-y/2}}{2^{k-1/2} \cdot 2^{1/2} \cdot \Gamma(k-1/2) \cdot \Gamma(1/2)} \ dw$$

$$f_Y(y) = \int_0^y \frac{(y-w)^{-1/2} w^{k-3/2} e^{-y/2}}{2^{k-1/2} \cdot 2^{1/2} \cdot \Gamma(k-1/2) \cdot \Gamma(1/2)} \ dw \ (CV) \ w := y \sin^2 \theta \Leftrightarrow \begin{cases} y-w = y \cos^2 \theta \\ dw = 2y \sin \theta \cos \theta \ d\theta \\ w = y \iff \theta = \pi/2 \\ w = 0 \iff \theta = 0 \end{cases}$$

$$f_Y(y) \stackrel{CV}{=} \frac{1}{2^{k-1/2} \cdot 2^{1/2} \cdot \Gamma(k-1/2) \cdot \Gamma(1/2)} \cdot \int_0^{\pi/2} \frac{y^{k-3/2} e^{-y/2} \sin^{2k-3} \theta \cdot (2y \sin \theta \cos \theta \ d\theta)}{y^{1/2} \cos \theta}$$

$$f_Y(y) \stackrel{CV}{=} \frac{1}{2^{k-1/2} \cdot 2^{1/2} \cdot \Gamma(k-1/2) \cdot \Gamma(1/2)} \cdot \int_0^{\pi/2} \frac{y^{k-3/2} e^{-y/2} \sin^{2k-3} \theta \cdot (2y \sin \theta \cos \theta \ d\theta)}{y^{1/2} \cos \theta}$$

$$f_Y(y) = \frac{y^{k-1}e^{-y/2}}{2^{k-3/2} \cdot 2^{1/2} \cdot \Gamma(k-1/2) \cdot \Gamma(1/2)} \cdot \int_0^{\pi/2} \sin^{2k-2}\theta \ d\theta$$

$$f_Y(y) = \frac{y^{k-1}e^{-y/2}}{2^{k-3/2} \cdot 2^{1/2} \cdot \Gamma(k-1/2) \cdot \Gamma(1/2)} \cdot \left[\frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma(k-1/2)}{\Gamma(k)} \right] = \frac{y^{(2k)/2-1}e^{-y/2}}{2^{(2k)/2} \cdot \Gamma((2k)/2)}$$

χ^2_{2k+1} FROM χ^2_{2k} & χ^2_1 PDF'S (χ^2 ODD THEOREM – CHISQOTHM):

$$X_1, X_2 \stackrel{IND}{\sim} \chi_1^2, \chi_{2k}^2 \implies Y := X_1 + X_2 \sim \chi_{2k+1}^2 \text{ where } f_Y(y) = \frac{y^{(2k+1)/2-1}e^{-y/2}}{2^{(2k+1)/2} \cdot \Gamma((2k+1)/2)}$$

This distribution of Y is called the **chi-square distribution with** (2k+1) **degrees of freedom**.

PROOF:

pdf's
$$f_{X_1}(x_1) = \frac{x_1^{-1/2}e^{-x_1/2}}{2^{1/2} \cdot \Gamma(1/2)}, \quad f_{X_2}(x_2) = \frac{x_2^{k-1}e^{-x_2/2}}{2^k \cdot \Gamma(k)} \implies \text{Supports } \Omega_{X_1} = \Omega_{X_2} = (0, \infty)$$

Joint pdf
$$f_{X_1,X_2}(x_1,x_2) \stackrel{IND}{=} f_{X_1}(x_1) \cdot f_{X_2}(x_2) = \frac{x_1^{-1/2} x_2^{k-1} e^{-(x_1+x_2)/2}}{2^k \cdot 2^{1/2} \cdot \Gamma(k) \cdot \Gamma(1/2)}$$

$$\text{Joint Support} \ \ \Omega_{X_1,X_2} \stackrel{IND}{=} \Omega_{X_1} \times \Omega_{X_2} = \{(x_1,x_2): x_1 \in \Omega_{X_1}, x_2 \in \Omega_{X_2}\} = \{(x_1,x_2): x_1 > 0, x_2 > 0\}$$

Change of random variables (CRV):

$$\begin{array}{ccc} Y := X_1 + X_2 & \iff & X_1 = Y - W \\ W := X_2 & \iff & X_2 = W & \implies J = \left[\begin{array}{ccc} \frac{\partial X_1}{\partial Y} & \frac{\partial X_1}{\partial W} \\ \frac{\partial X_2}{\partial Y} & \frac{\partial X_2}{\partial W} \end{array} \right] = \left[\begin{array}{ccc} 1 & -1 \\ 0 & 1 \end{array} \right] \implies |J| = 1$$

$$\implies \text{Joint pdf } f_{Y,W}(y,w) \stackrel{CRV}{=} f_{X_1,X_2}(y-w,w) \cdot |J| = \frac{(y-w)^{-1/2} w^{k-1} e^{-y/2}}{2^k \cdot 2^{1/2} \cdot \Gamma(k) \cdot \Gamma(1/2)}$$

$$\implies$$
 Joint Support $\Omega_{Y,W} = \{(y,w) : 0 < y < \infty, \ 0 < w < y\}$

$$\implies \text{Marginal pdf } f_Y(y) = \int_{\underline{\partial}\Omega_1^V}^{\overline{\partial}\Omega_1^V} f_{Y,W}(y,w) \ dw = \int_0^y \frac{(y-w)^{-1/2} w^{k-1} e^{-y/2}}{2^k \cdot 2^{1/2} \cdot \Gamma(k) \cdot \Gamma(1/2)} \ dw$$

$$f_Y(y) = \int_0^y \frac{(y-w)^{-1/2} w^{k-1} e^{-y/2}}{2^k \cdot 2^{1/2} \cdot \Gamma(k) \cdot \Gamma(1/2)} dw \quad (CV) \quad w := y \sin^2 \theta \iff \begin{cases} y-w &= y \cos^2 \theta \\ dw &= 2y \sin \theta \cos \theta \ d\theta \\ w = y &\iff \theta = \pi/2 \\ w = 0 &\iff \theta = 0 \end{cases}$$

$$f_Y(y) \stackrel{CV}{=} \frac{1}{2^k \cdot 2^{1/2} \cdot \Gamma(k) \cdot \Gamma(1/2)} \cdot \int_0^{\pi/2} \frac{y^{k-1} \sin^{2k-2} \theta \cdot (2y \sin \theta \cos \theta \ d\theta)}{y^{1/2} \cos \theta}$$

$$f_Y(y) \stackrel{CV}{=} \frac{1}{2^k \cdot 2^{1/2} \cdot \Gamma(k) \cdot \Gamma(1/2)} \cdot \int_0^{\pi/2} \frac{y^{k-1} \sin^{2k-2}\theta \cdot (2y \sin\theta \cos\theta \ d\theta)}{y^{1/2} \cos\theta}$$

$$f_Y(y) = \frac{y^{k-1/2}e^{-y/2}}{2^{k-1} \cdot 2^{1/2} \cdot \Gamma(k) \cdot \Gamma(1/2)} \cdot \int_0^{\pi/2} \sin^{2k-1}\theta \ d\theta$$

$$f_Y(y) = \frac{y^{k-1/2}e^{-y/2}}{2^{k-1} \cdot 2^{1/2} \cdot \Gamma(k) \cdot \Gamma(1/2)} \cdot \left[\frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma(k)}{\Gamma\left(k + \frac{1}{2}\right)} \right]$$

$$f_Y(y) = \frac{y^{k-1/2}e^{-y/2}}{2^{k-1} \cdot 2^{1/2} \cdot \Gamma(k) \cdot \Gamma(1/2)} \cdot \left[\frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma(k)}{\Gamma(k + \frac{1}{2})} \right]$$

$$f_Y(y) = \frac{y^{k-1/2}e^{-y/2}}{2^k \cdot 2^{1/2} \cdot \Gamma\left(k + \frac{1}{2}\right)} = \frac{y^{(2k+1)/2 - 1}e^{-y/2}}{2^{(2k+1)/2} \cdot \Gamma\left((2k+1)/2\right)} \qquad \Box$$

χ^2 DISTRIBUTION (BIBLIOGRAPHY):

- N. Balakrishnan, V.B. Nevzorov, A Primer on Statistical Distributions, Wiley, 2003. (§23.14)
- H.O. Lancaster, The Chi-squared Distribution, Wiley, 1969. (§V.7)
- J.B.S. Haldane, "The Approximate Normalization of a Class of Frequency Functions", Biometrika, 29 (1937), 392-404.
- K. Pearson, "Experimental Discussion of the (χ^2, P) test of Goodness of Fit", Biometrika, 24 (1932), 351-381.
- A.A. Tschuprow, "On the Mathematical Expectation of the Moments of Frequency Distributions. Part II", Biometrika, 13 (1920), 283-295.
- A.A. Tschuprow, "On the Mathematical Expectation of the Moments of Frequency Distributions", *Biometrika*, **12** (1918), 140-149 & 185-210.
- F.R. Helmert, "Die Genauigkeit der Formel von Peters zue Berechnung des wahrscheinlichen Beobachtungsfehlers directer Beobachtungen gleicher Genauigkeit", Astronomische Nachrichten, 88 (1876), 113-120.