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PART I

PART I:

Many-Sample Inference
Experimental Design Terminology
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Many-Sample Inference (Example)
Suppose we wish to determine whether three light bulb brands all have similar
lifetimes or not. A sample of 5 bulbs from each brand has their lifetimes
measured (in years) and recorded in the below table:

BULB BRAND: SAMPLE
SIZE: LIFETIMES (in yrs):

Brand 1 (x1•) 5 9.22, 9.07, 8.95, 8.98, 9.54
Brand 2 (x2•) 5 8.92, 8.88, 9.10, 8.71, 8.85
Brand 3 (x3•) 5 9.08, 8.99, 9.06, 8.93, 9.02

or expressed in terms of means and standard deviations:

BULB BRAND: SAMPLE
SIZE: MEAN LIFETIMES (in yrs): STD DEV:

Brand 1 (x1•) 5 x1• = 9.152 s1 ≈ 0.2410
Brand 2 (x2•) 5 x2• = 8.892 s2 ≈ 0.1406
Brand 3 (x3•) 5 x3• = 9.016 s3 ≈ 0.0594

Now, the appropriate hypotheses are:

H0 : µ1 = µ2 = µ3
HA : At least two of the µ’s differ where µi ≡

(
Population Mean of all

Brand i light bulbs

)
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Experimental Design Terminology

Definition
The collection of I samples to determine cause & effect is an experiment.
A balanced experiment has equal-sized samples/groups.
Each data point of a sample is called an observation or measurement.
The dependent variable to be measured is called the response.
The manner of sample collection & grouping is called experimental design.
The main characteristic distinguishing all the samples is called the factor.
The factor’s particular values or settings are called its levels.
Each sample corresponding to a level is called a group.

FACTOR A: GROUP SIZE: GROUPS:
Level 1 J x1• : x11, x12, · · · , x1J

Level 2 J x2• : x21, x22, · · · , x2J
...

...
...

Level I J xI• : xI1, xI2, · · · , xIJ

This section (§10.1) & §10.2 involve only balanced experiments.
This chapter’s last section (§10.3) considers unbalanced experiments.
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Experimental Design Terminology

Definition
The collection of I samples to determine cause & effect is an experiment.
A balanced experiment has equal-sized samples/groups.
Each data point of a sample is called an observation or measurement.
The dependent variable to be measured is called the response.
The manner of sample collection & grouping is called experimental design.
The main characteristic distinguishing all the samples is called the factor.
The factor’s particular values or settings are called its levels.
Each sample corresponding to a level is called a group.

FACTOR A: GROUP
SIZE:

GROUP
MEAN:

GROUP
STD DEV:

Level 1 (x1•) J x1• s1
Level 2 (x2•) J x2• s2

...
...

...
...

Level I (xI•) J xI• sI

This section (§10.1) & §10.2 involve only balanced experiments.
This chapter’s last section (§10.3) considers unbalanced experiments.
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Experimental Design Terminology (Example)

FACTOR A:
(BULB BRAND)

GROUP
SIZE:

GROUPS:
(BULB LIFETIMES in yrs)

Level 1 (x1•) 5 9.22, 9.07, 8.95, 8.98, 9.54
Level 2 (x2•) 5 8.92, 8.88, 9.10, 8.71, 8.85
Level 3 (x3•) 5 9.08, 8.99, 9.06, 8.93, 9.02

or expressed in terms of means and standard deviations:

FACTOR A:
(BULB BRAND)

GROUP
SIZE:

GROUP
MEAN:

GROUP
STD DEV:

Level 1 (x1•) 5 x1• = 9.152 s1 ≈ 0.2410
Level 2 (x2•) 5 x2• = 8.892 s2 ≈ 0.1406
Level 3 (x3•) 5 x3• = 9.016 s3 ≈ 0.0594

H0 : µ1 = µ2 = µ3
HA : At least two of the µ’s differ where µi ≡

(
Population Mean of all

Brand i light bulbs

)
REMARK: More about experimental design in later sections.
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PART II

PART II:

The Problem with Many-Sample t-Tests
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The Problem with Many-Sample t-Tests

Suppose a designed experiment calls to test four independent samples:

H0 : µ1 = µ2 = µ3 = µ4
HA : At least two of the µ’s differ

One way to do this is perform
(4

2

)
independent t-tests, each at signif. level α:

H(1)
0 : µ1 = µ2

H(1)
A : µ1 6= µ2

H(2)
0 : µ1 = µ3

H(2)
A : µ1 6= µ3

H(3)
0 : µ1 = µ4

H(3)
A : µ1 6= µ4

H(4)
0 : µ2 = µ3

H(4)
A : µ2 6= µ3

H(5)
0 : µ2 = µ4

H(5)
A : µ2 6= µ4

H(6)
0 : µ3 = µ4

H(6)
A : µ3 6= µ4
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The Problem with Many-Sample t-Tests
Suppose a designed experiment calls to test four independent samples:

H0 : µ1 = µ2 = µ3 = µ4
HA : At least two of the µ’s differ

Alas, since each successive t-test is performed with the same dataset,
the experiment-wise significance level, αexp, grows with each t-test:

αexp := P(Committing a Type I Error in at least one t-test)

= 1− P(Never Committing a Type I Error in any of the t-tests)

= 1− P
(⋂6

i=1(Not Committing a Type I Error in ith t-test)
)

IND
= 1−

∏6
i=1 P(Not Committing a Type I Error in ith t-test)

α
= 1−

∏6
i=1(1− α)

= 1− (1− α)6

[
α := P

(
Rejecting H(k)

0 | H(k)
0 is True

)]
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The Problem with Many-Sample t-Tests

H0 : µ1 = µ2 = µ3 = µ4
HA : At least two of the µ’s differ Nt-tests ≡ (# t-tests) =

(
4
2

)
= 6

Alas, with successive t-tests, αexp grows (AKA α-inflation):

Chosen α Resulting αexp = 1− (1− α)6

0.10 0.4686
0.05 0.2649
0.01 0.0585

0.001 0.0060

One can determine which α achieves a desired αexp, but often it’s not feasible:

Required α = 1− (1− αexp)1/6 Desired αexp

0.0174 0.10
0.0085 0.05
0.0017 0.01
0.0002 0.001

A loose (rough) upper bound for αexp is α× (# t-tests): αexp ≤ αNt-tests
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The Problem with Many-Sample t-Tests

To prevent α-inflation, all means should be simultaneously tested.
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PART III

PART III:

1-Factor Fixed Effects Linear (Statistical) Models:

Definitions, Examples

Least Squares Estimators (LSE’s)

Best Linear Unbiased Estimators (BLUE’s)

Gauss-Markov Theorem
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1-Factor Fixed Effects Linear (Statistical) Models

With many-sample inference, it’s convenient to use a linear model:

Definition
(1-Factor Fixed Effects Linear Model)

Given a 1-factor balanced experiment with I > 2 groups, each of size J.

Let Xij ≡ random variable for jth measurement in the ith group.

Then, the fixed effects linear model for the experiment is defined as:

Xij = µ+ αA
i + Eij where Eij

iid∼ Normal(0, σ2)

where:

µ ≡ population grand mean of all I population means
αA

i ≡ deviation of ith population mean µi from µ due to Factor A
Eij ≡ rv for error/noise applied to jth measurement in ith group

Fixed effects means all relevant levels of factor A are considered in model.
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1-Factor Linear Models (Motivating Example)

Xij = µ

µ := 3.2

µ1 = 3.2, µ2 = 3.2, µ3 = 3.2

FACTOR A: MEASUREMENTS:
Level 1 (x1•) x11 = 3.2, x12 = 3.2, x13 = 3.2, x14 = 3.2
Level 2 (x2•) x21 = 3.2, x22 = 3.2, x23 = 3.2, x24 = 3.2
Level 3 (x3•) x31 = 3.2, x32 = 3.2, x33 = 3.2, x34 = 3.2
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1-Factor Linear Models (Motivating Example)

Xij = µ+ αA
i

µ := 3.2

αA
1 := −5.5, αA

2 := −2.0, αA
3 := 7.5

µ1 = −2.3, µ2 = 1.2, µ3 = 10.7

FACTOR A: MEASUREMENTS:
Level 1 (x1•) x11 = −2.3, x12 = −2.3, x13 = −2.3, x14 = −2.3
Level 2 (x2•) x21 = 1.2, x22 = 1.2, x23 = 1.2, x24 = 1.2
Level 3 (x3•) x31 = 10.7, x32 = 10.7, x33 = 10.7, x34 = 10.7
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1-Factor Linear Models (Motivating Example)

Xij = µ+ αA
i + Eij

µ := 3.2

αA
1 := −5.5, αA

2 := −2.0, αA
3 := 7.5

µ1 = −2.3, µ2 = 1.2, µ3 = 10.7

Eij
iid∼ Normal(0, σ2 := 3.24)

FACTOR A: MEASUREMENTS:
Level 1 (x1•) x11 = −1.23, x12 = −1.17, x13 = 0.05, x14 = −3.08
Level 2 (x2•) x21 = 0.54, x22 = 1.03, x23 = 0.62, x24 = 1.63
Level 3 (x3•) x31 = 13.64, x32 = 12.30, x33 = 11.74, x34 = 10.60
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1-Factor Linear Models (Least-Squares Estimators)
Like all population parameters, linear model parameters can be estimated:

Proposition
Given a 1-factor linear model:

Xij = µ+ αA
i + Eij where Eij

iid∼ Normal(0, σ2)

Then:
(a) The least-squares♠♣ estimators (LSE’s) for the model parameters are:

µ̂ = x••
α̂A

i = xi• − x••
where x•• ≡ Grand sample mean

xi• ≡ Sample mean of ith group

(b) For these least-squares estimators, it’s required that
∑

i α̂
A
i = 0.

(c) These least-squares estimators are all unbiased.

PROOF: The general case is left as an ungraded exercise for the reader.
♠A.M. Legendre, Nouvelles Méthodes pour la Détermination des Orbites des Comètes, 1806.
♣Gauss, Theoria Motus Corporum Coelestrium in Sectionibus Conicis Solem Ambientium, 1809.
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1-Factor Linear Models (Predicted Responses)

With the model parameter estimators in hand, responses can be predicted:

Definition
(Predicted Responses)

Given a 1-factor linear model:

Xij = µ+ αA
i + Eij where Eij

iid∼ Normal(0, σ2)

Then the corresponding predicted responses, denoted x̂ij, are:

x̂ij := µ̂+ α̂A
i = x•• + (xi• − x••) = xi•

SYNONYMS: Predicted values, fitted values
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1-Factor Linear Models (Residuals)

With the predicted responses in hand, residuals can be computed:

Definition
(Residuals)

Given a 1-factor linear model:

Xij = µ+ αA
i + Eij where Eij

iid∼ Normal(0, σ2)

Then the corresponding predicted responses, denoted x̂ij, are:

x̂ij := µ̂+ α̂A
i = x•• + (xi• − x••) = xi•

Moreover, the corresponding residuals, denoted xres
ij , are:

xres
ij := xij − x̂ij = xij − xi•
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Linear Models (Best Linear Unbiased Estimators)

Point estimators for a linear model should be ideal ones:

Definition
(Best Linear Unbiased Estimators – BLUE’s)

A point estimator θ̂ is called a best linear unbiased estimator (BLUE) if:

It estimates a parameter θ of a linear model.
It is a linear combination of the data points: θ̂ :=

∑n
k=1 ckxk

It is an unbiased estimator: E[θ̂] = θ

It has minimum variance of all such unbiased estimators.

REMARK: BLUE’s are generally easier to construct & prove than UMVUE’s.

For a 1-factor linear model: Xij = µ+ αA
i + Eij

µ̂, α̂A
i are each linear combinations of data points in the linear model.

A particular example of demonstrating this is done in EX 10.1.1.
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1-Factor Linear Models (Gauss-Markov Theorem)

Ideally, point estimators for linear model parameters should be BLUE’s:

Theorem
(Gauss1-Markov2 Theorem)

Given a 1-factor linear model: Xij = µ+ αA
i + Eij

Moreover, suppose the following conditions are all satisfied:

E[Eij] = 0 (errors are all centered at zero)
V[Eij] = σ2 (errors all have the same finite variance)

C[Eij,Ei′j′ ] = 0 (errors are uncorrelated when i 6= i′ or j 6= j′)

Then, the least-squares estimators (LSE’s) µ̂, α̂A
i are all BLUE’s.

PROOF: Omitted due to time.

1C.F. Gauss, “Theoria Combinationis Observationum Erroribus Minimis Obnoxiae”, (1823), 1-58.
2A.A. Markov, Calculus of Probabilities, 1st Edition, 1900.
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PART IV

PART IV:

1-Factor Analysis of Variance (ANOVA):

Motivation

Basic Model Assumptions

F-Test Statistic Value
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1-Factor Analysis of Variance (Motivation)

High variance between groups
Low variance within groups

s2
between/s2

within � 1 =⇒ Factor A clearly has a significant effect!!
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1-Factor Analysis of Variance (Motivation)

Low variance between groups
High variance within groups

s2
between/s2

within � 1 =⇒ Factor A clearly has no significant effect!
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1-Factor Analysis of Variance (Motivation)

Low variance between groups
Low variance within groups

s2
between/s2

within ≈ 1 =⇒ Hard to tell if factor A has a significant effect...
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1-Factor Analysis of Variance (Motivation)

High variance between groups
High variance within groups

s2
between/s2

within ≈ 1 =⇒ Hard to tell if factor A has a significant effect...
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1-Factor ANOVA Basic Model Assumptions

In order for the forthcoming ANOVA test to bear good statistical properties
and to utilize the Gauss-Markov Theorem, certain assumptions regarding the
samples & populations must be imposed (similarly to t-tests & F-tests):

Proposition
(1-Factor ANOVA Basic Model Assumptions)

All measurements on units are independent.
All groups are approximately normally distributed.
All groups have approximately same variance.
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1-Factor ANOVA Test Statistic

The preceding four slides suggest the natural statistic is the F-Test Statistic:

Proposition
(Best Test Statistic Value for 1-Factor ANOVA♠♣)

Given an experiment with one factor and I > 2 groups.
Moreover, suppose the 1-factor basic ANOVA assumptions are all satisfied.
Then, the F-test using the following test statistic value:

f =
s2

between

s2
within

is the most-powerful test that prevents α-inflation for hypotheses:

H0 : µ1 = µ2 = · · · = µI

HA : At least two of the µ’s differ

♠ R.A. Fisher, “The Correlation between Relatives on the Supposition of Mendelian Inheritance”,
Transactions of the Royal Society of Edinburgh, 52 (1918), 399-433.

♣ R.A. Fisher, Statistical Methods for Research Workers, 1925. (Ch VII)
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s2
between in terms of a Mean Square & Sum of Squares

Proposition
Given a 1-factor experiment involving I groups, each of size J.

Then the variance between groups, s2
between, is the variance of sample

consisting of the I group means xi• scaled by common treatment size J:

s2
between :=

J ·
∑

i(xi• − x••)2

I − 1
=

∑
i

∑
j(α̂

A
i )2

I − 1
:=

SSA

νA
:= MSA

where the grand mean, x••, is the mean of the I group means, xi•:

x•• := 1
I

∑
i xi• = 1

IJ

∑
i

∑
j xij

In essence, a large variance between groups indicates much of the observed
variation is explained by the chosen Factor A – hence, subscript A.

SSA and νA are used later for computing F-cutoffs/P-values and interpretation.
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s2
within in terms of a Mean Square & Sum of Squares

Proposition
Given a 1-factor experiment involving I groups, each of size J.

Then the variance within groups, s2
within, is the mean of the group variances:

s2
within :=

(J − 1) ·
∑

i s2
i

I(J − 1)
=

∑
i

∑
j(xij − xi•)

2

I(J − 1)
=

∑
i

∑
j(xres

ij )2

I(J − 1)
:=

SSres

νres
:= MSres

Effectively, a large variance within the groups indicates that much of the
observed variation is not explained by the chosen Factor A. Therefore, the
within variance is considered unexplained error in the experimental design.

SSres and νres are used later for finding F-cutoffs/P-values and interpretation.
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F-Test Statistic Value in terms of Mean Squares

We can now express the F-Test statistic value in terms of mean squares:

Proposition
(Test Statistic Value for 1-Factor ANOVA in terms of Mean Squares)

fA =
s2

between

s2
within

=
MSA

MSres

The test statistic value for 1-Factor ANOVA will be denoted fA instead of f .

In terms of the F-test notation in section 9.5, fA is always f+.
The following slides explain why this is always the case for ANOVA.
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PART V

PART V:

1-Factor Balanced Completely Randomized ANOVA
(1F bcrANOVA)

1-Factor Balanced Completely Randomized Design

Fixed Effects Model Assumptions

Fixed Effects Linear Model

Sums of Squares

F-Test Procedure

Expected Mean Squares

Point Estimators of σ2
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1-Factor Balanced Completely Randomized Design
An example balanced completely randomized design entails:

Collect 12 relevant experimental units (EU’s): EU1,EU2, · · · ,EU12

Produce a random shuffle sequence using software:
(4, 12, 5, 10; 7, 2, 1, 11; 3, 6, 8, 9)

Use random shuffle sequence to assign the EU’s into the I levels:
FACTOR A: MEASUREMENTS:

Level 1 EU4, EU12, EU5, EU10
Level 2 EU7, EU2, EU1, EU11
Level 3 EU3, EU6, EU8, EU9

Measure each EU appropriately (note the change in notation):
FACTOR A: MEASUREMENTS:
Level 1 (x1•) x11, x12, x13, x14
Level 2 (x2•) x21, x22, x23, x24
Level 3 (x3•) x31, x32, x33, x34

EUk ≡
(
kth experimental unit collected

)
xij ≡

(
Measurement of jth experimental unit in ith level

)
xi• ≡

(
Group of all measurements in ith level

)
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How to Produce Random Shuffle Sequence

How to produce random shuffle sequence of numbers 1 through N:

LANGUAGE: MINIMUM CODE:

Matlab s=1:N;
s(randperm(length(s)))

Python import random
random.sample(range(1,N+1),N)

R sample(N)
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1-Factor ANOVA Fixed Effects Model Assumptions

Fixed effects means all relevant levels of factor A are considered in model.

Proposition
(1F bcrANOVA Fixed Effects Model Assumptions)

(1 Desired Factor) Factor A has I levels.
(All Factor Levels are Considered) AKA Fixed Effects.
(Balanced Replication in Groups) Each group has J > 1 units.
(Distinct Exp. Units ) All IJ units are distinct from each other.

(Random Assignment across Groups)

(Independence) All measurements on units are independent.
(Normality) All groups are approximately normally distributed.
(Equal Variances) All groups have approximately same variance.

Mnemonic: 1DF AFLaC BRiG DEU | RAaG | I.N.EV
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1F bcrANOVA Fixed Effects Linear Model
Fixed effects means all relevant levels of factor A are considered in model.

1F bcrANOVA Fixed Effects Linear Model
I ≡ # groups to compare
J ≡ # measurements in each group

Xij ≡ rv for jth measurement taken from ith group
µi ≡ Mean of ith population or true average response from ith group
µ ≡ Common population mean or true average overall response
αA

i ≡ Deviation from µ due to ith group
Eij ≡ Deviation from µ due to random error

ASSUMPTIONS: Eij
iid∼ Normal

(
0, σ2

)
Xij = µ+ αA

i + Eij where
∑

i α
A
i = 0

HA
0 : All αA

i = 0
HA

A : Some αA
i 6= 0

Xij
IND∼ ... ≡ rv’s Xij are independently distributed as ...

Eij
iid∼ ... ≡ rv’s Eij are independently and identically distributed as ...
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1F bcrANOVA (Sums of Squares “Partition” Variation)

SStotal︸ ︷︷ ︸
Total Variation in Experiment

= SSA︸︷︷︸
Variation due to Factor A

+ SSres︸ ︷︷ ︸
Unexplained Variation∑

ij(xij − µ̂)2 =
∑

ij(α̂
A
i )2 +

∑
ij(xres

ij )2

∑
i

∑
j(xij − x••)2 =

∑
i

∑
j(xi• − x••)2 +

∑
i

∑
j(xij − xi•)

2

ν︸︷︷︸
Total dof ′s in Experiment

= νA︸︷︷︸
′Between Groups′ dof ′s

+ νres︸︷︷︸
′Within Groups′ dof ′s

ν = IJ − 1 νA = I − 1 νres = I(J − 1)
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1F bcrANOVA F-Test (Given Means xi• & SD’s si)

1 Determine df’s: n = IJ, νA = I − 1, νres = I(J − 1)

2 Compute Grand Mean: x•• = 1
I

∑
i xi•

3 Compute SSres :=
∑

ij(xres
ij )2 = (J − 1) ·

∑
i s2

i

4 Compute SSA :=
∑

ij(α̂
A
i )2 = J ·

∑
i(xi• − x••)2

5 Compute Mean Squares: MSres := SSres
νres

, MSA := SSA
νA

6 Compute Test Statistic Value: fA = MSA
MSres

7 Compute F-cutoff/P-value:
By hand, lookup f ∗νA,νres;α

By SW, compute pA = 1− ΦF(fA; νA, νres)

8 Render Decision:
If fA ≥ f ∗νA,νres;α , then reject HA

0 ; else accept HA
0 .

If pA ≤ α , then reject HA
0 ; else accept HA

0 .
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1F bcrANOVA F-Test (Given Means xi• & ESE’s σ̂xi•)

1 Determine df’s: n = IJ, νA = I − 1, νres = I(J − 1)

2 Compute Grand Mean: x•• = 1
I

∑
i xi•

3 Compute Group Std. Dev’s: si =
√

J · σ̂xi•

4 Compute SSres :=
∑

ij(xres
ij )2 = (J − 1) ·

∑
i s2

i

5 Compute SSA :=
∑

ij(α̂
A
i )2 = J ·

∑
i(xi• − x••)2

6 Compute Mean Squares: MSres := SSres
νres

, MSA := SSA
νA

7 Compute Test Statistic Value: fA = MSA
MSres

8 Compute F-cutoff/P-value:
By hand, lookup f ∗νA,νres;α

By SW, compute pA = 1− ΦF(fA; νA, νres)

9 Render Decision:
If fA ≥ f ∗νA,νres;α , then reject HA

0 ; else accept HA
0 .

If pA ≤ α , then reject HA
0 ; else accept HA

0 .
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1F bcrANOVA F-Test (Given Observations xij)

1 Determine df’s: n = IJ, νA = I − 1, νres = I(J − 1)

2 Compute Group Means: xi• := 1
J

∑
j xij

3 Compute Group Variances: s2
i := 1

J−1

∑
j(xij − xi•)

2

4 Compute Grand Mean: x•• = 1
I

∑
i xi•

5 Compute SSres :=
∑

ij(xres
ij )2 = (J − 1) ·

∑
i s2

i

6 Compute SSA :=
∑

ij(α̂
A
i )2 = J ·

∑
i(xi• − x••)2

7 Compute Mean Squares: MSres := SSres
νres

, MSA := SSA
νA

8 Compute Test Statistic Value: fA = MSA
MSres

9 Compute F-cutoff/P-value:
By hand, lookup f ∗νA,νres;α

By SW, compute pA = 1− ΦF(fA; νA, νres)

10 Render Decision:
If fA ≥ f ∗νA,νres;α , then reject HA

0 ; else accept HA
0 .

If pA ≤ α , then reject HA
0 ; else accept HA

0 .
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1F bcrANOVA F-Test (Summary Table)

1-Factor ANOVA Table (Significance Level α)

Variation
Source df Sum of

Squares
Mean

Square
F Stat
Value P-value Decision

Factor A νA SSA MSA fA pA Acc/Rej HA
0

Unknown νres SSres MSres

Total ν SStotal
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1F bcrANOVA (Expected Mean Squares)

Proposition
Given 1-factor experiment satisfying the 1F bcrANOVA assumptions. Then:

(i) E[MSres] = σ2

(ii) E[MSA] = σ2 +
J

I − 1

∑
i

(αA
i )2

For the proof of part (i): There’s nothing too terribly tricky involved.
For the proof of part (ii):

We will proceed by producing a simplified expression for E[MSA] in terms of σ2

and αA
i using the error group means Ei• and the grand error mean E•• as was

done in Hays’ statistics textbook†.

†W.L. Hays, Statistics, 5th Edition, 1994.

Alternatives involve tricky uses of covariance and/or tedious determinations of
the distributions of the squares of the means (which are Gamma distributions.)
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1F bcrANOVA Expected Mean Squares: Proof of (i)

E[SSres] := E
[∑

ij(Xres
ij )2

]
= E

[∑
i

∑
j(Xij − X̂ij)

2
]

= E
[∑

i

∑
j

(
Xij − (µ̂+ α̂A

i )
)2
]

BLUE
= E

[∑
i

∑
j(Xij − Xi•)

2
]

CIO
= J−1

J−1 · E
[∑

i

∑
j(Xij − Xi•)

2
]

= (J − 1) ·
∑

i E
[

1
J−1

∑
j(Xij − Xi•)

2
]

= (J − 1) ·
∑

i E
[
S2

i

]
= (J − 1) ·

∑
i σ

2

= I(J − 1)σ2

=⇒ E [MSres] := E
[

SSres

νres

]
=

E [SSres]

I(J − 1)
=

I(J − 1)σ2

I(J − 1)
= σ2

CIO ≡ “Clever Insertion of One”
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1F bcrANOVA Expected Mean Squares: Proof of (ii)
Given Xij = µ+ αA

i + Eij s.t. Eij
IND∼ Normal(0, σ2) &

∑
i α

A
i = 0

=⇒ Xi• = µ+ αA
i + Ei•

CLT
=⇒ Ei•

IND∼ Normal(0, σ
2

J )

=⇒ X•• = µ+ E••
CLT
=⇒ E•• ∼ Normal(0, σ

2

IJ )

E[SSA] := E
[∑

ij(α̂
A
i )2
]

BLUE
=
∑

i

∑
j E
[
(Xi• − X••)2

]
=

∑
i

∑
j E
[
(αA

i + Ei• − E••)2
]

(1)
= J ·

∑
i E
[
(αA

i )2
]

+ J ·
∑

i E
[
(Ei•)

2 − 2(Ei•E••) + (E••)2
]

(2)
= J ·

∑
i(α

A
i )2 + J ·

∑
i E
[
(Ei•)

2
]

+ E
[
−IJ(E••)2

]
(3)
= J ·

∑
i(α

A
i )2 + J ·

∑
i

[(
E
[
Ei•
])2

+ V
[
Ei•
]]

+ E
[
−IJ(E••)2

]
= J ·

∑
i(α

A
i )2 + J ·

∑
i

[
(0)

2
+ σ2

J

]
− IJ · E

[
(E••)2

]
(3)
= J ·

∑
i(α

A
i )2 + Iσ2 − IJ ·

((
E
[
E••
])2

+ V
[
E••
])

= J ·
∑

i(α
A
i )2 + Iσ2 − IJ ·

(
(0)

2
+ σ2

IJ

)
= J ·

∑
i(α

A
i )2 + (I − 1)σ2

(1)
∑

i(Ei• − E••) = 0 (2)
∑

i Ei• = I · E•• (3) V [X] = E
[
X2
]
− (E [X])

2
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1F bcrANOVA Expected Mean Squares: Proof of (ii)

E[SSA] = (I − 1)σ2 + J ·
∑

i(α
A
i )2

=⇒ E[MSA] := E
[

SSA

νA

]
=

E[SSA]

I − 1
=

(I − 1)σ2 + J ·
∑

i(α
A
i )2

I − 1

∴ E[MSA] = σ2 +
J

I − 1
·
∑

i(α
A
i )2
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1F bcrANOVA (Point Estimators of σ2)

Proposition
(Point Estimation of Mean Squares)
Given 1-factor balanced experiment satisfying ANOVA assumptions. Then:

(i) MSres is always an unbiased point estimator of the population variance:

H0 is indeed true OR H0 is indeed false =⇒ E[MSres] = σ2

(ii) If the status quo prevails, MSA is an unbiased estimator of pop. variance:

H0 is indeed true =⇒ E[MSA] = σ2

(iii) If the status quo fails, MSA tends to overestimate population variance:

H0 is indeed false =⇒ E[MSA] > σ2

PROOF OF PART (i):

Follows from part (i) of Excepted Mean Squares proposition.
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MSA as Point Estimator of σ2: Proof of (ii) & (iii)

Proposition
(Point Estimation of Mean Squares)
Given I size-J random samples satisfying ANOVA assumptions. Then:

(ii) H0 is indeed true =⇒ E[MSA] = σ2

(iii) H0 is indeed false =⇒ E[MSA] > σ2

From the Expected Mean Squares proposition, E[MSA] = σ2 + J
I−1 ·

∑
i(α

A
i )2

(ii) H0 is true =⇒ µ1 = µ2 = · · · = µI

=⇒ µ = µ1 = · · · = µI (Since µ := 1
I

∑
i µi)

=⇒ αA
1 = αA

2 = · · · = αA
I = 0 (Since αA

i := µi − µ)
=⇒ E[MSA] = σ2

(iii) H0 is false =⇒ At least two of the µ’s differ
=⇒ At least two of the αA’s 6= 0
=⇒

∑
i(α

A
i )2 > 0

=⇒ E[MSA] > σ2
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PART VI

PART VI:

Effect Size Measures for 1-Factor ANOVA:

Fisher (η̂2
A), Kelley (ε̂2

A), Hays (ω̂2
A)
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1-Factor ANOVA (Effect Size Measures)

Recall that when performing a hypothesis test of any kind, statistical
significance does not necessarily imply practical significance.

As Gravetter & Wallnau put it in §13.5 of their statistics textbook[GW]:

“the term significant does not necessarily mean large,
it simply means larger than expected by chance.”

Q: How does one determine whether a statistically significant effect due to
factor A in 1F ANOVA is a practical (i.e. large enough) effect??

A: Effect size measures! What follows are 3 such popular measures.
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1-Factor ANOVA (Effect Size Measures)

YEAR NAME MEASURE HOW IT COMPARES∗

1925†
Fisher

[GW],[H],[LH],[S] η̂2
A := SSA

SStotal

Most biased (positively)♠

Least SD, Most RMSE♠

1935‡ Kelley ε̂2
A := SSA−νAMSres

SStotal

Least biased (negatively)♠

Most SD, Nearly Least RMSE♠

1963♣
Hays

[H],[LH],[S] ω̂2
A := SSA−νAMSres

SStotal+MSres

Moderately biased (negatively)♠

Moderate SD, Least RMSE♠

∗Requires all 1F ANOVA assumptions (LADR’S RAIN EV) to be satisfied.
SD ≡ Standard Deviation, RMSE ≡ Root Mean Squared Error
†R.A. Fisher, Statistical Methods for Research Workers, 1925. (Ch VIII, §45)

‡T.L. Kelley, “An Unbiased Correlation Ratio Measure”, Proceedings of the
National Academy of Sciences, 21 (1935), 554-559.

♣W.L. Hays, Statistics for Psychologists, 1963.

♠K. Okada, “Is Omega Squared Less Biased? A Comparison of Three Major
Effect Size Indices in 1-Way ANOVA”, Behaviormetrika, 40 (2013), 129-147.
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Effect Size Measures (General Remarks)

There are about 75 different effect size measures† that have been discovered!!

†R.E. Kirk, “The Importance of Effect Magnitude”, In S.F. Davis (Ed.),
Handbook of Research Methods in Experimental Psychology, 2003.

Moreover, realize that many of these measures are ’measures of association’
and, hence, are tailored for either numerical-numerical (num-num) inference
(Ch 12 & 13) or categorical-categorical (cat-cat) inference (Ch 14).

1 Cutoff values for “small”/“medium”/“large” effects vary by field[LH]:
J. Cohen, Statistical Power Analysis for Behavioral Sciences, 1969. (§8.2)

2 Be very careful when interpreting values of effect size measures[S],
especially for 2-Factor ANOVA or higher:

K.E. O’Grady, “Measures of Explained Variance: Cautions and Limitations”,
Psychological Bulletin, 92 (1982), 766-777.
C.A. Pierce, R.A. Block, H. Aguinis, “Cautionary Note on Reporting
Eta-Squared Values from Multifactor ANOVA Designs”, Educational &
Psychological Measurement, 64 (2004), 916-924.
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Textbook Logistics for Section 10.1

Difference(s) in Terminology:

TEXTBOOK
TERMINOLOGY:

SLIDES/OUTLINE
TERMINOLOGY:

Treatment/Cell Group

Difference(s) in Notation:

CONCEPT TEXTBOOK
NOTATION

SLIDES/OUTLINE
NOTATION

Probability of Event P(E) P(E)
Expected Value E(X) E[X]

Variance V(X) V[X]

Sum of Squares of Factor A SSTr SSA

Mean Square of Factor A MSTr MSA

Sum of Squares of Residuals SSE SSres

Mean Square of Residuals MSE MSres

Null Hypothesis for Factor A H0 HA
0

Alt. Hypothesis for Factor A HA HA
A
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Fin

Fin.
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