1F Unbalanced Completely Randomized ANOVA
 Engineering Statistics II Section 10.3

Josh Engwer

TTU

2018

PART I:

1-Factor Fixed Effects Linear (Statistical) Models:
Definitions, Examples
Least Squares Estimators (LSE's)
Best Linear Unbiased Estimators (BLUE's)
Gauss-Markov Theorem

1-Factor Unbalanced Fixed Effects Linear Models

With many-sample inference, it's convenient to use a linear model:

Definition

(1-Factor Unbalanced Fixed Effects Linear Model)
Given a 1 -factor unbalanced experiment with $I>2$ groups, each of size J_{i}.
Let $X_{i j} \equiv$ random variable for $j^{\text {th }}$ measurement in the $i^{\text {th }}$ group.
Then, the unbalanced fixed effects linear model for the experiment is:

$$
X_{i j}=\mu+\alpha_{i}^{A}+E_{i j} \quad \text { where } \quad E_{i j} \stackrel{i d}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

where:
$\mu \equiv$ population grand mean of all I population means
$\alpha_{i}^{A} \equiv$ deviation of $i^{t h}$ population mean μ_{i} from μ due to Factor A
$E_{i j} \equiv \mathrm{rv}$ for error/noise applied to $j^{\text {th }}$ measurement in $i^{\text {th }}$ group
Fixed effects means all relevant levels of factor A are considered in model.

1F Unbalanced Linear Models (Motivating Example)

$$
\begin{gathered}
X_{i j}=\mu \\
\mu:=3.2 \\
\mu_{1}=3.2, \mu_{2}=3.2, \mu_{3}=3.2
\end{gathered}
$$

FACTOR A:	MEASUREMENTS:		
Level 1 $\left(x_{1} \bullet\right)$	$x_{11}=3.2$,	$x_{12}=3.2$,	$x_{13}=3.2$,
Level 2 $\left(x_{2} \bullet\right)$	$x_{21}=3.2$,	$x_{22}=3.2$,	$x_{23}=3.2, \quad x_{24}=3.2$
Level 3 $\left(x_{3} \bullet\right)$	$x_{31}=3.2$,	$x_{32}=3.2$,	

1F Unbalanced Linear Models (Motivating Example)

$$
\begin{gathered}
X_{i j}=\mu+\alpha_{i}^{A} \\
\mu:=3.2 \\
\alpha_{1}^{A}:=-5.5, \alpha_{2}^{A}:=-2.0, \alpha_{3}^{A}:=7.5 \\
\mu_{1}=-2.3, \mu_{2}=1.2, \mu_{3}=10.7
\end{gathered}
$$

FACTOR A:	MEASUREMENTS:			
Level 1 $\left(x_{\bullet} \bullet\right)$	$x_{11}=-2.3$,	$x_{12}=-2.3$,	$x_{13}=-2.3$,	
Level 2 $\left(x_{2} \bullet\right)$	$x_{21}=1.2$,	$x_{22}=1.2$,	$x_{23}=1.2, \quad x_{24}=1.2$	
Level 3 $\left(x_{3 \bullet}\right)$	$x_{31}=10.7$,	$x_{32}=10.7$,		

1F Unbalanced Linear Models (Motivating Example)

$$
\begin{gathered}
X_{i j}=\mu+\alpha_{i}^{A}+E_{i j} \\
\mu:=3.2 \\
\alpha_{1}^{A}:=-5.5, \alpha_{2}^{A}:=-2.0, \alpha_{3}^{A}:=7.5 \\
\mu_{1}=-2.3, \mu_{2}=1.2, \mu_{3}=10.7 \\
E_{i j} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma^{2}:=3.24\right)
\end{gathered}
$$

FACTOR A:	MEASUREMENTS:		
Level 1 $\left(x_{1} \bullet\right)$	$x_{11}=-1.23$,	$x_{12}=-1.17$,	$x_{13}=0.05$,
Level 2 $\left(x_{2} \bullet\right)$	$x_{21}=0.54$,	$x_{22}=1.03$,	$x_{23}=0.62, \quad x_{24}=1.63$
Level 3 $\left(x_{3 \bullet}\right)$	$x_{31}=13.64$,	$x_{32}=12.30$,	

1-Factor Linear Models (Least-Squares Estimators)

Like all population parameters, linear model parameters can be estimated:

Proposition

Given a 1-factor unbalanced linear model: (ith group has J_{i} measurements)

$$
X_{i j}=\mu+\alpha_{i}^{A}+E_{i j} \quad \text { where } E_{i j} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

Then:
(a) The least-squares ${ }^{\boldsymbol{\wedge} \boldsymbol{d}}$ estimators (LSE's) for the model parameters are:

$$
\begin{aligned}
\hat{\mu} & =\bar{x}_{\bullet \bullet} \\
\hat{\alpha}_{i}^{A} & =\bar{x}_{i \bullet}-\bar{x}_{\bullet \bullet}
\end{aligned} \quad \text { where } \quad \begin{aligned}
& \bar{x}_{\bullet \bullet} \\
& \bar{x}_{i \bullet}
\end{aligned}
$$

(b) For these least-squares estimators, it's required that $\sum_{i} J_{i} \hat{\alpha}_{i}^{A}=0$.
(c) These least-squares estimators are all unbiased.

PROOF: The general case is left as an ungraded exercise for the reader.
^A.M. Legendre, Nouvelles Méthodes pour la Détermination des Orbites des Comètes, 1806.
*Gauss, Theoria Motus Corporum Coelestrium in Sectionibus Conicis Solem Ambientium, 1809.

1-Factor Linear Models (Predicted Responses)

With the model parameter estimators in hand, responses can be predicted:

Definition

(Predicted Responses)
Given a 1-factor unbalanced linear model: ($i^{\text {th }}$ group has J_{i} measurements)

$$
X_{i j}=\mu+\alpha_{i}^{A}+E_{i j} \text { where } E_{i j} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

Then the corresponding predicted responses, denoted $\hat{x}_{i j}$, are:

$$
\hat{x}_{i j}:=\hat{\mu}+\hat{\alpha}_{i}^{A}=\bar{x}_{\bullet \bullet}+\left(\bar{x}_{i \bullet}-\bar{x}_{\bullet \bullet}\right)=\bar{x}_{i \bullet}
$$

SYNONYMS: Predicted values, fitted values

1-Factor Linear Models (Residuals)

With the predicted responses in hand, residuals can be computed:

Definition

(Residuals)
Given a 1-factor unbalanced linear model: ($i^{\text {th }}$ group has J_{i} measurements)

$$
X_{i j}=\mu+\alpha_{i}^{A}+E_{i j} \quad \text { where } E_{i j} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

Then the corresponding predicted responses, denoted $\hat{x}_{i j}$, are:

$$
\hat{x}_{i j}:=\hat{\mu}+\hat{\alpha}_{i}^{A}=\bar{x}_{\bullet \bullet}+\left(\bar{x}_{i \bullet}-\bar{x}_{\bullet \bullet}\right)=\bar{x}_{i \bullet}
$$

Moreover, the corresponding residuals, denoted $x_{i j}^{\text {res }}$, are:

$$
x_{i j}^{r e s}:=x_{i j}-\hat{x}_{i j}=x_{i j}-\bar{x}_{i \bullet}
$$

Linear Models (Best Linear Unbiased Estimators)

Point estimators for a linear model should be ideal ones:

Definition

(Best Linear Unbiased Estimators - BLUE's)
A point estimator $\hat{\theta}$ is called a best linear unbiased estimator (BLUE) if:

- It estimates a parameter θ of a linear model.
- It is a linear combination of the data points: $\hat{\theta}:=\sum_{k=1}^{n} c_{k} x_{k}$
- It is an unbiased estimator: $\mathbb{E}[\hat{\theta}]=\theta$
- It has minimum variance of all such unbiased estimators.

REMARK: BLUE's are generally easier to construct \& prove than UMVUE's.

For a 1-factor linear model: $\quad X_{i j}=\mu+\alpha_{i}^{A}+E_{i j}$
$\hat{\mu}, \hat{\alpha}_{i}^{A}$ are each linear combinations of data points in the linear model.
A particular example of demonstrating this is done in EX 10.1.1.

1-Factor Linear Models (Gauss-Markov Theorem)

Ideally, point estimators for linear model parameters should be BLUE's:

Theorem

(Gauss ${ }^{1}$-Markov ${ }^{2}$ Theorem)
Given a 1-factor unbalanced linear model: (ith group has J_{i} measurements)

$$
X_{i j}=\mu+\alpha_{i}^{A}+E_{i j}
$$

Moreover, suppose the following conditions are all satisfied:

$$
\begin{array}{rll}
\mathbb{E}\left[E_{i j}\right] & =0 & \text { (errors are all centered at zero) } \\
\mathbb{V}\left[E_{i j}\right] & =\sigma^{2} \quad \text { (errors all have the same finite variance) } \\
\mathbb{C}\left[E_{i j}, E_{i^{\prime} j^{\prime}}\right] & =0 & \text { (errors are uncorrelated when } \left.i \neq i^{\prime} \text { or } j \neq j^{\prime}\right)
\end{array}
$$

Then, the least-squares estimators (LSE's) $\hat{\mu}, \hat{\alpha}_{i}^{A}$ are all BLUE's.
PROOF: Omitted due to time.
${ }^{1}$ C.F. Gauss, "Theoria Combinationis Observationum Erroribus Minimis Obnoxiae", (1823), 1-58.
${ }^{2}$ A.A. Markov, Calculus of Probabilities, $1^{\text {st }}$ Edition, 1900.

PART II:

1-Factor Unbalanced Completely Randomized ANOVA (1F ucrANOVA)

1-Factor Unbalanced Completely Randomized Design
Fixed Effects Model Assumptions
Fixed Effects Linear Model
Sums of Squares
F-Test Procedure
Expected Mean Squares
Point Estimators of σ^{2}
Post-Hoc Comparisons

1F ucrANOVA (Motivation)

A 1 F ucrANOVA is used if:

- Some experimental units (EU's) in a balanced experiment...
- (if machines) ...malfunction, lose power, become damaged, are stolen or die.
- (if plants) ...become ill, are infested with parasites, are stolen or die.
- (if animals) ...become ill, bite experimenters ${ }^{\dagger}$, are stolen or die.
- (if people) ...move away, do not show up, fail to comply, become ill or die.
- The levels of Factor A naturally differ in size - e.g. classroom rosters ${ }^{\dagger}$.
- Some levels of Factor A are prohibitively expensive to carry out ${ }^{\ddagger}$...
- ...and, hence, have fewer EU's.
- Some levels of Factor A are far more interesting than others ${ }^{\ddagger}$...
- ...and, hence, have more EU's.

[^0]
1-Factor Unbalanced Completely Randomized Design

An example unbalanced completely randomized design entails:

- Collect 9 relevant experimental units (EU's): $\mathrm{EU}_{1}, \mathrm{EU}_{2}, \cdots, \mathrm{EU}_{9}$
- Produce a random shuffle sequence using software: (4,7,9; 5, 3, 6, 2; 1, 8)
- Use random shuffle sequence to assign the EU's into the I levels:

FACTOR A:	MEASUREMENTS: 2			
Level 1	EU_{4},	EU_{7},	EU_{9}	
Level 2	EU_{5},	EU_{3},	EU_{6},	EU_{2}
Level 3	EU_{1},	EU_{8}		

- Measure each EU appropriately (note the change in notation):

FACTOR A:	MEASUREMENTS:		
Level 1 $\left(x_{1} \bullet\right)$	x_{11},	x_{12},	x_{13}
Level 2 $\left(x_{2} \bullet\right)$	x_{21},	x_{22},	x_{23},
x_{24}			
Level 3 $\left(x_{3 \bullet}\right)$	x_{31},	x_{32}	

$\mathrm{EU}_{k} \equiv\left(k^{\text {th }}\right.$ experimental unit collected)
$x_{i j} \equiv$ (Measurement of $j^{\text {th }}$ experimental unit in $i^{\text {th }}$ level)
$x_{i \bullet} \quad \equiv$ (Group of all measurements in $i^{\text {th }}$ level)

How to Produce Random Shuffle Sequence

How to produce random shuffle sequence of numbers 1 through N :

LANGUAGE:	MINIMUM CODE:
Matlab	$\mathrm{s}=1: N ;$ $\mathrm{s}($ randperm (length $(\mathrm{s}))$)
Python	import random random. sample (range $(1, N+1), N)$
R	sample (N)

1F ucrANOVA (Fixed Effects Model Assumptions)

Proposition

(1F ucrANOVA Fixed Effects Model Assumptions)

- (1 Desired Factor) Factor A has I levels.
- (All Factor Levels are Considered) AKA Fixed Effects.
- (Replication in Groups) Each group has $J_{i}>1$ units.
- (Distinct Exp. Units) All $\sum_{i} J_{i}$ units are distinct from each other.
- (Random Assignment across Groups)
- (Independence) All measurements on units are independent.
- (Normality) All groups are approximately normally distributed.
- (Equal Variances) All groups have approximately same variance.

Mnemonic: 1DF AFLaC RiG DEU|RAaG|I.N.EV

1F ucrANOVA Fixed Effects Linear Model

Fixed effects means all relevant levels of factor A are considered in model.

1F ucrANOVA Fixed Effects Linear Model

```
    \(I \equiv\) \# groups to compare
    \(J_{i} \equiv\) \# measurements in \(i^{\text {th }}\) group
    \(X_{i j} \equiv \mathrm{rv}\) for \(j^{\text {th }}\) measurement taken from \(i^{\text {th }}\) group
    \(\mu_{i} \equiv\) Mean of \(i^{t h}\) population or true average response from \(i^{\text {th }}\) group
    \(\mu \equiv\) Common population mean or true average overall response
    \(\alpha_{i}^{A} \equiv\) Deviation from \(\mu\) due to \(i^{\text {th }}\) group
    \(E_{i j} \equiv\) Deviation from \(\mu\) due to random error
```

 ASSUMPTIONS: \(\quad E_{i j} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right)\)
 \(X_{i j}=\mu+\alpha_{i}^{A}+E_{i j} \quad\) where \(\quad \sum_{i} J_{i} \alpha_{i}^{A}=0\)
 $H_{0}^{A}: \quad$ All $\quad \alpha_{i}^{A}=0$
$H_{A}^{A}:$ Some $\alpha_{i}^{A} \neq 0$

1F ucrANOVA (Sums of Squares "Partition" Variation)

$$
\begin{aligned}
\sum_{i j}\left(x_{i j}-\hat{\mu}\right)^{2} & =\sum_{i j}\left(\hat{\alpha}_{i}^{A}\right)^{2}+\sum_{i j}\left(x_{i j}^{r e s}\right)^{2} \\
\sum_{i} \sum_{j=1}^{J_{i}}\left(x_{i j}-\bar{x}_{\bullet \bullet}\right)^{2} & =\sum_{i} \sum_{j=1}^{J_{i}}\left(\bar{x}_{i \bullet}-\bar{x}_{\bullet \bullet}\right)^{2}+\sum_{i} \sum_{j=1}^{J_{i}}\left(x_{i j}-\bar{x}_{i \bullet}\right)^{2}
\end{aligned}
$$

$$
\begin{gathered}
\nu=n-1 \\
\left(n:=\sum_{i} J_{i}\right)
\end{gathered}
$$

$$
\nu_{A}=I-1
$$

$$
\nu_{r e s}=n-I
$$

1F ucrANOVA F-Test \& Table (Given $x_{i j}$)

(1) Determine df's: $n:=\sum_{i} J_{i}, \quad \nu_{A}=I-1, \quad \nu_{\text {res }}=n-I$
(2) Compute Group Means: $\bar{x}_{i \bullet}:=\frac{1}{J_{i}} \sum_{j=1}^{J_{i}} x_{i j}$
(3) Compute Grand Mean: $\bar{x}_{\bullet \bullet}:=\frac{1}{I} \sum_{i} \bar{x}_{\boldsymbol{\bullet}}$
(9) Compute $\mathrm{SS}_{\text {res }}:=\sum_{i} \sum_{j=1}^{J_{i}}\left(x_{i j}^{\text {res }}\right)^{2}=\sum_{i} \sum_{j=1}^{J_{i}}\left(x_{i j}-\bar{x}_{i \bullet}\right)^{2}$ and $\mathrm{MS}_{\text {res }}:=\frac{\mathrm{SS}_{\text {res }}}{\nu_{\text {res }}}$
(6) Compute $\mathrm{SS}_{A}:=\sum_{i} \sum_{j=1}^{J_{i}}\left(\hat{\alpha}_{i}^{A}\right)^{2}=\sum_{i} \sum_{j=1}^{J_{i}}\left(\bar{x}_{i \bullet}-\bar{x}_{\bullet \bullet}\right)^{2}$ and $\mathrm{MS}_{A}:=\frac{\mathrm{SS}_{A}}{\nu_{A}}$
(6) Compute Test Statistic Value: $f_{A}=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{\text {rs }}}$
(3) Compute P-value: $p_{A}:=\mathbb{P}\left(F>f_{A}\right) \approx 1-\Phi_{F}\left(f_{A} ; \nu_{A}, \nu_{\text {res }}\right)$
(3) Render Decision:
(by SW) If $\quad p_{A} \leq \alpha$
(by hand) If $f_{A} \geq f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}$
then reject H_{0}^{A} for H_{A}^{A}, else accept H_{0}^{A}. then reject H_{0}^{A} for H_{A}^{A}, else accept H_{0}^{A}.

1F ucrANOVA F-Test \& Table (Given $\bar{x}_{i 0} \& s_{i}^{2}$)

(1) Determine df's: $n:=\sum_{i} J_{i}, \quad \nu_{A}=I-1, \quad \nu_{\text {res }}=n-I$
(2) Compute Grand Mean: $\bar{x}_{\bullet \bullet}:=\frac{1}{I} \sum_{i} \bar{x}_{\boldsymbol{\bullet}}$
(3) Compute $\mathrm{SS}_{\text {res }}:=\sum_{i} \sum_{j=1}^{J_{i}}\left(x_{i j}^{\text {res }}\right)^{2}=\sum_{i}\left(J_{i}-1\right) \cdot s_{i}^{2}$ and $\mathrm{MS}_{\text {res }}:=\frac{\mathrm{SS}_{\text {res }}}{\nu_{\text {res }}}$
(9) Compute $\mathrm{SS}_{A}:=\sum_{i} \sum_{j=1}^{J_{i}}\left(\hat{\alpha}_{i}^{A}\right)^{2}=\sum_{i} \sum_{j=1}^{J_{i}}\left(\bar{x}_{\boldsymbol{\bullet}}-\bar{x}_{\bullet \bullet}\right)^{2}$ and $\mathrm{MS}_{A}:=\frac{\mathrm{SS}_{A}}{\nu_{A}}$
(6) Compute Test Statistic Value: $f_{A}=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{\text {res }}}$
(7) Compute P-value: $p_{A}:=\mathbb{P}\left(F>f_{A}\right) \approx 1-\Phi_{F}\left(f_{A} ; \nu_{A}, \nu_{\text {res }}\right)$
(3 Render Decision:
(by SW) If $p_{A} \leq \alpha$
(by hand) If $f_{A} \geq f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}$
then reject H_{0}^{A} for H_{A}^{A}, else accept H_{0}^{A}. then reject H_{0}^{A} for H_{A}^{A}, else accept H_{0}^{A}.

1F ucrANOVA F-Test \& Table (Given $\bar{x}_{i_{0}} \&{\widehat{x_{x_{0}}}}$)

(1) Determine df's: $n:=\sum_{i} J_{i}, \quad \nu_{A}=I-1, \quad \nu_{\text {res }}=n-I$
(2) Compute Group Variances: $s_{i}^{2}=\sqrt{J_{i}} \cdot \widehat{\sigma}_{\bar{x}_{i}}$
(3) Compute Grand Mean: $\bar{x}_{\bullet \bullet}:=\frac{1}{I} \sum_{i} \bar{x}_{\boldsymbol{\bullet}}$
(9) Compute $\mathrm{SS}_{\text {res }}:=\sum_{i} \sum_{j=1}^{J_{i}}\left(x_{i j}^{\text {res }}\right)^{2}=\sum_{i}\left(J_{i}-1\right) \cdot s_{i}^{2}$ and $\mathrm{MS}_{\text {res }}:=\frac{\mathrm{SS}_{\text {res }}}{\nu_{\text {res }}}$
(6) Compute $\mathrm{SS}_{A}:=\sum_{i} \sum_{j=1}^{J_{i}}\left(\hat{\alpha}_{i}^{A}\right)^{2}=\sum_{i} \sum_{j=1}^{J_{i}}\left(\bar{x}_{i \bullet}-\bar{x}_{\bullet \bullet}\right)^{2}$ and $\mathrm{MS}_{A}:=\frac{\mathrm{SS}_{A}}{\nu_{A}}$
(6) Compute Test Statistic Value: $f_{A}=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{\text {res }}}$
(7) Compute P-value: $p_{A}:=\mathbb{P}\left(F>f_{A}\right) \approx 1-\Phi_{F}\left(f_{A} ; \nu_{A}, \nu_{\text {res }}\right)$
(3) Render Decision:
(by SW) If $\quad p_{A} \leq \alpha$ then reject H_{0}^{A} for H_{A}^{A}, else accept H_{0}^{A}.
(by hand) If $f_{A} \geq f_{\nu_{A}, \nu_{r e s} ; \alpha}^{*}$ then reject H_{0}^{A} for H_{A}^{A}, else accept H_{0}^{A}.

1F bcrANOVA F-Test (Summary Table)

1F ucrANOVA Table (Significance Level α)

Variation Source	df	Sum of Squares	Mean Square	F Stat Value	P-value	Decision
Factor A	ν_{A}	SS_{A}	MS_{A}	f_{A}	p_{A}	Acc/Rej H_{0}^{A}
Unknown	$\nu_{\text {res }}$	$\mathrm{SS}_{\text {res }}$	$\mathrm{MS}_{\text {res }}$			
Total	ν	$\mathrm{SS}_{\text {total }}$				

1F ucrANOVA (Expected Mean Squares)

Proposition

Given 1-factor experiment satisfying the 1F ucrANOVA assumptions. Then:

$$
\text { (i) } \mathbb{E}\left[M S_{\text {res }}\right]=\sigma^{2}
$$

(ii) $\mathbb{E}\left[M S_{A}\right]=\sigma^{2}+\frac{1}{I-1} \sum_{i} J_{i}\left(\alpha_{i}^{A}\right)^{2}$

PROOF: Omitted as it's similar (but a bit more tedious) to 1F bcrANOVA.

1F ucrANOVA (Point Estimators of σ^{2})

Proposition

(Point Estimation of Mean Squares)
Given 1F balanced experiment satisfying $1 F$ ucrANOVA assumptions. Then:
(i) $M S_{\text {res }}$ is always an unbiased point estimator of the population variance:
H_{0} is indeed true $O R H_{0}$ is indeed false $\Longrightarrow \mathbb{E}\left[M S_{\text {res }}\right]=\sigma^{2}$
(ii) If the status quo prevails, $M S_{A}$ is an unbiased estimator of pop. variance:

$$
H_{0} \text { is indeed true } \Longrightarrow \mathbb{E}\left[M S_{A}\right]=\sigma^{2}
$$

(iii) If the status quo fails, $M S_{A}$ tends to overestimate population variance:
H_{0} is indeed false $\Longrightarrow \mathbb{E}\left[M S_{A}\right]>\sigma^{2}$
PROOF: Omitted as it's similar (but a bit more tedious) to 1F bcrANOVA.

Simultaneous Q-Cl's for Mean Differences

Suppose a 1 F ucrANOVA results in the rejection of null hypothesis H_{0}^{A}.
Then, at least two of the population means significantly differ, but ANOVA does not indicate which means significantly differ.

Therefore, a post-hoc procedure must be used:

Proposition

Given an experiment with I groups each of size $J_{i}\left(n:=\sum_{i} J_{i}\right)$ such that the 1F ucrANOVA assumptions are satisfied.
Then the approximate simultaneous $100(1-\alpha) \%$ Q-Cl's for all mean differences $\mu_{i}-\mu_{j}$ are:

$$
\left(\bar{x}_{i \bullet}-\bar{x}_{j \bullet}\right) \pm q_{I, \nu_{\text {res }} ; \alpha}^{*} \cdot \sqrt{M S_{\text {res }} \cdot \frac{1}{2}\left(\frac{1}{J_{i}}+\frac{1}{J_{j}}\right)} \quad \forall i<j \quad\left(\nu_{\text {res }}:=n-I\right)
$$

If Q-Cl for $\mu_{i}-\mu_{j}$ does not contain zero, then $\mu_{i} \& \mu_{j}$ significantly differ.
Unfortunately, computing all the Q-Cl's is tedious and wasteful.

Tukey-Kramer Complete Pairwise Post-Hoc Comp.

Fortunately, the following procedure is far more efficient:

Proposition

Given an experiment with I groups each of size $J_{i} \quad\left(n:=\sum_{i} J_{i}, \nu_{r e s}:=n-I\right)$ where 1F ucrANOVA rejects H_{0}^{A} at level α and the J_{i} 's only differ slightly. Then, to determine which population means significantly differ:
(1) Sort the group means in ascending order: $\bar{x}_{(1) \bullet} \leq \bar{x}_{(2) \bullet} \leq \cdots \leq \bar{x}_{(I) \bullet}$
(2) Find significant difference widths $w_{(i j)}=q_{I, \nu_{r e s} ; \alpha}^{*} \cdot \sqrt{M S_{\text {res }} \cdot \frac{1}{2}\left(\frac{1}{J_{(i)}}+\frac{1}{J_{(i)}}\right)}$
(3) If $\bar{x}_{(j) \bullet} \in\left[\bar{x}_{(i) \bullet}, \bar{x}_{(i) \bullet}+w_{(i j)}\right]$, underline $\bar{x}_{(i) \bullet}$ and $\bar{x}_{(j) \bullet}$ with new line.
(9) Repeat STEP 1 with all sorted mean pairs $\bar{x}_{(i) \bullet}, \bar{x}_{(j)} \bullet$ such that $i<j$. Interpretation:

- Group means sharing a common underline implies they are not significantly different from one another.
- Group means not sharing a common underline implies they are significantly different from one another.

1-Factor ANOVA Model (Adequacy) Checking

Standardized Residuals

Checking for Outliers
Checking Normality Assumption
Checking Independence Assumption
Checking Equal Variances Assumption

1F ANOVA Model Checking: Standardized Residuals

Definition

(Standardized Residuals)

Given a 1-factor experiment, either balanced or only slightly unbalanced:

$$
X_{i j}=\mu+\alpha_{i}^{A}+E_{i j}
$$

Moreover, suppose 1F bcrANOVA / ucrANOVA was performed accordingly. Then, the standardized residuals ${ }^{\dagger}$ are defined to be:

$$
z_{i j}^{\text {res }}:=\frac{x_{i j}^{r e s}}{\sqrt{\mathrm{SS}_{r e s} /(n-1)}}
$$

An alternative definition \ddagger that's reasonable but not used here is: $\frac{x_{i j}^{r e s}}{\sqrt{\mathrm{MS}_{\text {res }}}}$
${ }^{\dagger}$ Dean, Voss et al, Design \& Analysis of Experiments, $2^{\text {nd }}$ Ed, 2017. (§5.2.1)
${ }^{\ddagger}$ Montgomery, Design \& Analysis of Experiments, $7^{\text {th }}$ Ed, Wiley, 2009. (§3.4.1)

ANOVA Model Checking: No Outliers

1F ANOVA Model Check: Outliers

ANOVA Model Checking: Some (Possible) Outliers

1F ANOVA Model Check: Outliers

Measurements between two and three std deviations are possibly outliers. Measurements beyond three standard deviations are definitely outliers.

ANOVA Model Checking: Outlier Mitigation

Q: How to handle outliers when performing 1F ANOVA?
A: For each outlier:

- If outlier was due to measurement/calculation error, correct it ${ }^{\dagger \ddagger}$.
- Else, outlier may be due to violation(s) of the ANOVA assumptions ${ }^{\dagger}$.
- Else, the 1-factor linear model may be insufficient ${ }^{\dagger}$:
- Consider building a 2-Factor ANOVA model... (covered in Ch11)
- ...or an Analysis of Covariance (ANCOVA) model (beyond scope of course)
"We should be careful not to reject or discard an outlying observation unless we have reasonably non-statistical grounds for doing so. At worst, you may end up with two analyses; one with the outlier and one without." ${ }^{*}$
†Dean, Voss et al, Design \& Analysis of Experiments, $2^{\text {nd }}$ Ed, 2017. (§5.4)
${ }^{\ddagger}$ Montgomery, Design \& Analysis of Experiments, $7^{\text {th }}$ Ed, Wiley, 2009. (§3.4.1)

ANOVA Model Checking: Normality Satisfied

1F ANOVA Model Check: Normality

ANOVA Model Checking: Normality Violated

1F ANOVA Model Check: Normality

ANOVA Model Checking: Normality Mitigation

Q: How to perform a 1F ANOVA when the Normality Assumption is violated?
A: Perform a 1F Kruskal-Wallis ${ }^{\uparrow}$ ANOVA which does not assume normality.

- To be covered in Chapter 15.
^W. Kruskal, W. Wallis, "Use of Ranks in One-Criterion Variance Analysis", Journal of the American Statistical Association, 47 (1952), 583-621.

ANOVA Model Checking: Independence Satisfied

1F ANOVA Model Check: Independence

There's no discernible pattern.

ANOVA Model Checking: Independence Violated

1F ANOVA Model Check: Independence

There's a clear (cycle) pattern.

ANOVA Model Checking: Independence Violated

1F ANOVA Model Check: Independence

ANOVA Model Checking: Independence Mitigation

Q: How to perform a 1F ANOVA when the Independence is violated?
A: This is where things become frustrating:

- If randomization was not used, redo the experiment using randomization ${ }^{\ddagger}$.
- If randomization was used, then use a more complicated model ${ }^{\dagger}$:
- 2-Factor ANOVA - to be covered in Ch11
- Analysis of Covariance (ANCOVA) - beyond scope of this course

[^1]
ANOVA Model Checking: Equi-Variance Satisfied

1F ANOVA Model Check: Equi-Variance

ANOVA Model Checking: Equi-Variance Violated

1F ANOVA Model Check: Equi-Variance

ANOVA Model Checking: Equi-Variance Mitigation

Q: How to perform 1F ANOVA when Equi-Variance Assumption is violated?
A: Perform an appropriate variance-stabilizing data transformation ${ }^{\dagger \ddagger}$ first:

$$
\begin{gathered}
\log X, \log (1+X), \log \left(1+\min x_{i j}+X\right), \\
\sqrt{X}, \sqrt{0.5+X}, \sqrt{X}+\sqrt{1+X}, \\
1 / X, 1 / \sqrt{X}, \arcsin (\sqrt{X}), 2 \arcsin (\sqrt{X \pm 1 / 2 m})
\end{gathered}
$$

If data are counts or Poisson-like, use a square-root transformation ${ }^{\dagger \ddagger \boldsymbol{\omega}}$. If data are proportions or Binomial-like, use an arcsine transformation ${ }^{\dagger \star}$. When in doubt, plot $\log s_{i}$ vs. $\log \left(\bar{x}_{i \bullet}\right)$ to help determine data transformation ${ }^{\dagger \ddagger}$. If data transformations don't help much, a more robust method is necessary ${ }^{\rho}$.
†Dean, Voss et al, Design \& Analysis of Experiments, 2 ${ }^{\text {nd }}$ Ed, 2017. (§5.6.2)
${ }^{\ddagger}$ D.C. Montgomery, Design \& Analysis of Experiments, $7^{\text {th }}$ Ed, 2009. (§3.4.3)
${ }^{*}$ D.C. Howell, Statistical Methods for Psychology, $7^{\text {th }}$ Ed, 2010. (§11.9)
${ }^{9}$ R.J. Grissom, "Heterogeneity of Variance in Clinical Data", Journal of Consulting \& Clinical Psychology, 68 (2000), 155-165.

NOTE: Data transformations are beyond the scope of this course.

Textbook Logistics for Section 10.3

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Expected Value	$E(X)$	$\mathbb{E}[X]$
Variance	$V(X)$	$\mathbb{V}[X]$
Sum of Squares of Factor A	SSTr	SS_{A}
Mean Square of Factor A	MSTr	MS_{A}
Sum of Squares of Residuals	SSE	$\mathrm{SS}_{\text {res }}$
Mean Square of Residuals	MSE	$\mathrm{MS}_{\text {res }}$
Effect of $i^{\text {th }}$ Factor A	α_{i}	α_{i}^{A}
Null Hypothesis for Factor A	H_{0}	H_{0}^{A}
Alt. Hypothesis for Factor A	H_{A}	H_{A}^{A}

Textbook Logistics for Section 10.3

- Ignore " β for the F Test" section.
- Used to compute the power of a particular ANOVA.
- Also used to determine minimum group sizes J_{i} to ensure a sufficiently-powerful ANOVA.
- Ignore "Relationship of the F Test to the t Test" section.
- For $I=2$, the pooled t-test is equivalent to 1 -Factor ANOVA.
- For $I=2$, the independent t-test is more flexible than 1 -Factor ANOVA.
- For $I>2$, there's no reliable general test without assuming equal variances.
- Ignore "A Random Effects Model" section.
- Occurs when the levels of Factor A are chosen for an experiment out of a larger set (or population) of levels rather than choosing all possible levels.
- The resulting linear model now has random variables $A_{i} \sim \operatorname{Normal}\left(0, \sigma_{A}^{2}\right)$ for Factor A instead of model parameters $\alpha_{i}^{A} \in \mathbb{R}$ such that $\sum_{i} \alpha_{i}^{A}=0$.
- The corresponding hypotheses are now:

$$
\begin{aligned}
& H_{0}^{A}: \sigma_{A}^{2}=0 \\
& H_{A}^{A}: \sigma_{A}^{2}>0
\end{aligned}
$$

- The ANOVA procedure is identical as for fixed effects linear models.
- However, model assumption checking is subtler and trickier.
- Also, point estimation of σ^{2} is somewhat different.

Fin.

[^0]: ${ }^{\dagger}$ D.C. Howell, Statistical Methods for Psychology, $7^{\text {th }}$ Edition, Cengage, 2010. (§15.2)
 \ddagger D.C. Montgomery, Design and Analysis of Experiments, $7^{\text {th }}$ Edition, Wiley, 2009. (§11.7)

[^1]: ${ }^{\dagger}$ Dean, Voss et al, Design \& Analysis of Experiments, $2^{\text {nd }}$ Ed, 2017.
 ${ }^{\ddagger}$ Montgomery, Design \& Analysis of Experiments, $7^{\text {th }}$ Ed, Wiley, 2009. (§3.4.2)

