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PART I

PART I:

1-Factor Fixed Effects Linear (Statistical) Models:

Definitions, Examples

Least Squares Estimators (LSE’s)

Best Linear Unbiased Estimators (BLUE’s)

Gauss-Markov Theorem
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1-Factor Unbalanced Fixed Effects Linear Models

With many-sample inference, it’s convenient to use a linear model:

Definition
(1-Factor Unbalanced Fixed Effects Linear Model)

Given a 1-factor unbalanced experiment with I > 2 groups, each of size Ji.

Let Xij ≡ random variable for jth measurement in the ith group.

Then, the unbalanced fixed effects linear model for the experiment is:

Xij = µ+ αA
i + Eij where Eij

iid∼ Normal(0, σ2)

where:

µ ≡ population grand mean of all I population means
αA

i ≡ deviation of ith population mean µi from µ due to Factor A
Eij ≡ rv for error/noise applied to jth measurement in ith group

Fixed effects means all relevant levels of factor A are considered in model.
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1F Unbalanced Linear Models (Motivating Example)

Xij = µ

µ := 3.2

µ1 = 3.2, µ2 = 3.2, µ3 = 3.2

FACTOR A: MEASUREMENTS:
Level 1 (x1•) x11 = 3.2, x12 = 3.2, x13 = 3.2,
Level 2 (x2•) x21 = 3.2, x22 = 3.2, x23 = 3.2, x24 = 3.2
Level 3 (x3•) x31 = 3.2, x32 = 3.2,
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1F Unbalanced Linear Models (Motivating Example)

Xij = µ+ αA
i

µ := 3.2

αA
1 := −5.5, αA

2 := −2.0, αA
3 := 7.5

µ1 = −2.3, µ2 = 1.2, µ3 = 10.7

FACTOR A: MEASUREMENTS:
Level 1 (x1•) x11 = −2.3, x12 = −2.3, x13 = −2.3,
Level 2 (x2•) x21 = 1.2, x22 = 1.2, x23 = 1.2, x24 = 1.2
Level 3 (x3•) x31 = 10.7, x32 = 10.7,
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1F Unbalanced Linear Models (Motivating Example)

Xij = µ+ αA
i + Eij

µ := 3.2

αA
1 := −5.5, αA

2 := −2.0, αA
3 := 7.5

µ1 = −2.3, µ2 = 1.2, µ3 = 10.7

Eij
iid∼ Normal(0, σ2 := 3.24)

FACTOR A: MEASUREMENTS:
Level 1 (x1•) x11 = −1.23, x12 = −1.17, x13 = 0.05,
Level 2 (x2•) x21 = 0.54, x22 = 1.03, x23 = 0.62, x24 = 1.63
Level 3 (x3•) x31 = 13.64, x32 = 12.30,
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1-Factor Linear Models (Least-Squares Estimators)
Like all population parameters, linear model parameters can be estimated:

Proposition
Given a 1-factor unbalanced linear model: (ith group has Ji measurements)

Xij = µ+ αA
i + Eij where Eij

iid∼ Normal(0, σ2)

Then:
(a) The least-squares♠♣ estimators (LSE’s) for the model parameters are:

µ̂ = x••
α̂A

i = xi• − x••
where x•• ≡ Grand sample mean

xi• ≡ Sample mean of ith group

(b) For these least-squares estimators, it’s required that
∑

i Jiα̂
A
i = 0.

(c) These least-squares estimators are all unbiased.

PROOF: The general case is left as an ungraded exercise for the reader.
♠A.M. Legendre, Nouvelles Méthodes pour la Détermination des Orbites des Comètes, 1806.
♣Gauss, Theoria Motus Corporum Coelestrium in Sectionibus Conicis Solem Ambientium, 1809.
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1-Factor Linear Models (Predicted Responses)

With the model parameter estimators in hand, responses can be predicted:

Definition
(Predicted Responses)

Given a 1-factor unbalanced linear model: (ith group has Ji measurements)

Xij = µ+ αA
i + Eij where Eij

iid∼ Normal(0, σ2)

Then the corresponding predicted responses, denoted x̂ij, are:

x̂ij := µ̂+ α̂A
i = x•• + (xi• − x••) = xi•

SYNONYMS: Predicted values, fitted values
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1-Factor Linear Models (Residuals)

With the predicted responses in hand, residuals can be computed:

Definition
(Residuals)

Given a 1-factor unbalanced linear model: (ith group has Ji measurements)

Xij = µ+ αA
i + Eij where Eij

iid∼ Normal(0, σ2)

Then the corresponding predicted responses, denoted x̂ij, are:

x̂ij := µ̂+ α̂A
i = x•• + (xi• − x••) = xi•

Moreover, the corresponding residuals, denoted xres
ij , are:

xres
ij := xij − x̂ij = xij − xi•
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Linear Models (Best Linear Unbiased Estimators)

Point estimators for a linear model should be ideal ones:

Definition
(Best Linear Unbiased Estimators – BLUE’s)

A point estimator θ̂ is called a best linear unbiased estimator (BLUE) if:

It estimates a parameter θ of a linear model.
It is a linear combination of the data points: θ̂ :=

∑n
k=1 ckxk

It is an unbiased estimator: E[θ̂] = θ

It has minimum variance of all such unbiased estimators.

REMARK: BLUE’s are generally easier to construct & prove than UMVUE’s.

For a 1-factor linear model: Xij = µ+ αA
i + Eij

µ̂, α̂A
i are each linear combinations of data points in the linear model.

A particular example of demonstrating this is done in EX 10.1.1.
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1-Factor Linear Models (Gauss-Markov Theorem)
Ideally, point estimators for linear model parameters should be BLUE’s:

Theorem
(Gauss1-Markov2 Theorem)

Given a 1-factor unbalanced linear model: (ith group has Ji measurements)

Xij = µ+ αA
i + Eij

Moreover, suppose the following conditions are all satisfied:

E[Eij] = 0 (errors are all centered at zero)
V[Eij] = σ2 (errors all have the same finite variance)

C[Eij,Ei′j′ ] = 0 (errors are uncorrelated when i 6= i′ or j 6= j′)

Then, the least-squares estimators (LSE’s) µ̂, α̂A
i are all BLUE’s.

PROOF: Omitted due to time.
1C.F. Gauss, “Theoria Combinationis Observationum Erroribus Minimis Obnoxiae”, (1823), 1-58.
2A.A. Markov, Calculus of Probabilities, 1st Edition, 1900.
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PART II

PART II:

1-Factor Unbalanced Completely Randomized ANOVA
(1F ucrANOVA)

1-Factor Unbalanced Completely Randomized Design

Fixed Effects Model Assumptions

Fixed Effects Linear Model

Sums of Squares

F-Test Procedure

Expected Mean Squares

Point Estimators of σ2

Post-Hoc Comparisons

Josh Engwer (TTU) 1F Unbalanced Completely Randomized ANOVA 2018 12 / 44



1F ucrANOVA (Motivation)
A 1F ucrANOVA is used if:

Some experimental units (EU’s) in a balanced experiment...
(if machines) ...malfunction, lose power, become damaged, are stolen or die.
(if plants) ...become ill, are infested with parasites, are stolen or die.
(if animals) ...become ill, bite experimenters†, are stolen or die.
(if people) ...move away, do not show up, fail to comply, become ill or die.

The levels of Factor A naturally differ in size – e.g. classroom rosters†.
Some levels of Factor A are prohibitively expensive to carry out‡...

...and, hence, have fewer EU’s.

Some levels of Factor A are far more interesting than others‡...
...and, hence, have more EU’s.

†D.C. Howell, Statistical Methods for Psychology, 7th Edition, Cengage, 2010. (§15.2)
‡D.C. Montgomery, Design and Analysis of Experiments, 7th Edition, Wiley, 2009. (§11.7)
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1-Factor Unbalanced Completely Randomized Design
An example unbalanced completely randomized design entails:

Collect 9 relevant experimental units (EU’s): EU1,EU2, · · · ,EU9

Produce a random shuffle sequence using software:
(4, 7, 9; 5, 3, 6, 2; 1, 8)

Use random shuffle sequence to assign the EU’s into the I levels:
FACTOR A: MEASUREMENTS:

Level 1 EU4, EU7, EU9
Level 2 EU5, EU3, EU6, EU2
Level 3 EU1, EU8

Measure each EU appropriately (note the change in notation):
FACTOR A: MEASUREMENTS:
Level 1 (x1•) x11, x12, x13
Level 2 (x2•) x21, x22, x23, x24
Level 3 (x3•) x31, x32

EUk ≡
(
kth experimental unit collected

)
xij ≡

(
Measurement of jth experimental unit in ith level

)
xi• ≡

(
Group of all measurements in ith level

)
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How to Produce Random Shuffle Sequence

How to produce random shuffle sequence of numbers 1 through N:

LANGUAGE: MINIMUM CODE:

Matlab s=1:N;
s(randperm(length(s)))

Python import random
random.sample(range(1,N+1),N)

R sample(N)
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1F ucrANOVA (Fixed Effects Model Assumptions)

Proposition
(1F ucrANOVA Fixed Effects Model Assumptions)

(1 Desired Factor) Factor A has I levels.
(All Factor Levels are Considered) AKA Fixed Effects.
(Replication in Groups) Each group has Ji > 1 units.
(Distinct Exp. Units) All

∑
i Ji units are distinct from each other.

(Random Assignment across Groups)

(Independence) All measurements on units are independent.
(Normality) All groups are approximately normally distributed.
(Equal Variances) All groups have approximately same variance.

Mnemonic: 1DF AFLaC RiG DEU | RAaG | I.N.EV
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1F ucrANOVA Fixed Effects Linear Model

Fixed effects means all relevant levels of factor A are considered in model.

1F ucrANOVA Fixed Effects Linear Model
I ≡ # groups to compare

Ji ≡ # measurements in ith group
Xij ≡ rv for jth measurement taken from ith group
µi ≡ Mean of ith population or true average response from ith group
µ ≡ Common population mean or true average overall response
αA

i ≡ Deviation from µ due to ith group
Eij ≡ Deviation from µ due to random error

ASSUMPTIONS: Eij
iid∼ Normal

(
0, σ2

)
Xij = µ+ αA

i + Eij where
∑

i Jiα
A
i = 0

HA
0 : All αA

i = 0
HA

A : Some αA
i 6= 0
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1F ucrANOVA (Sums of Squares “Partition” Variation)

SStotal︸ ︷︷ ︸
Total Variation in Experiment

= SSA︸︷︷︸
Variation due to Factor A

+ SSres︸ ︷︷ ︸
Unexplained Variation∑

ij(xij − µ̂)2 =
∑

ij(α̂
A
i )2 +

∑
ij(xres

ij )2

∑
i

∑Ji
j=1(xij − x••)2 =

∑
i

∑Ji
j=1(xi• − x••)2 +

∑
i

∑Ji
j=1(xij − xi•)

2

ν︸︷︷︸
Total dof ′s in Experiment

= νA︸︷︷︸
′Between Groups′ dof ′s

+ νres︸︷︷︸
′Within Groups′ dof ′s

ν = n− 1 νA = I − 1 νres = n− I(
n :=

∑
i Ji
)
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1F ucrANOVA F-Test & Table (Given xij)

1 Determine df’s: n :=
∑

i Ji, νA = I − 1, νres = n− I
2 Compute Group Means: xi• := 1

Ji

∑Ji
j=1 xij

3 Compute Grand Mean: x•• := 1
I

∑
i xi•

4 Compute SSres :=
∑

i

∑Ji
j=1(xres

ij )2 =
∑

i

∑Ji
j=1(xij − xi•)

2 and MSres := SSres
νres

5 Compute SSA :=
∑

i

∑Ji
j=1(α̂A

i )2 =
∑

i

∑Ji
j=1(xi• − x••)2 and MSA := SSA

νA

6 Compute Test Statistic Value: fA = MSA
MSres

7 Compute P-value: pA := P(F > fA) ≈ 1− ΦF(fA; νA, νres)

8 Render Decision:
(by SW) If pA ≤ α then reject HA

0 for HA
A , else accept HA

0 .
(by hand) If fA ≥ f ∗νA,νres;α then reject HA

0 for HA
A , else accept HA

0 .
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1F ucrANOVA F-Test & Table (Given xi• & s2
i )

1 Determine df’s: n :=
∑

i Ji, νA = I − 1, νres = n− I
2 Compute Grand Mean: x•• := 1

I

∑
i xi•

3 Compute SSres :=
∑

i

∑Ji
j=1(xres

ij )2 =
∑

i(Ji − 1) · s2
i and MSres := SSres

νres

4 Compute SSA :=
∑

i

∑Ji
j=1(α̂A

i )2 =
∑

i

∑Ji
j=1(xi• − x••)2 and MSA := SSA

νA

5 Compute Test Statistic Value: fA = MSA
MSres

6 Compute P-value: pA := P(F > fA) ≈ 1− ΦF(fA; νA, νres)

7 Render Decision:
(by SW) If pA ≤ α then reject HA

0 for HA
A , else accept HA

0 .
(by hand) If fA ≥ f ∗νA,νres;α then reject HA

0 for HA
A , else accept HA

0 .
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1F ucrANOVA F-Test & Table (Given xi• & σ̂xi•)

1 Determine df’s: n :=
∑

i Ji, νA = I − 1, νres = n− I
2 Compute Group Variances: s2

i =
√

Ji · σ̂xi•

3 Compute Grand Mean: x•• := 1
I

∑
i xi•

4 Compute SSres :=
∑

i

∑Ji
j=1(xres

ij )2 =
∑

i(Ji − 1) · s2
i and MSres := SSres

νres

5 Compute SSA :=
∑

i

∑Ji
j=1(α̂A

i )2 =
∑

i

∑Ji
j=1(xi• − x••)2 and MSA := SSA

νA

6 Compute Test Statistic Value: fA = MSA
MSres

7 Compute P-value: pA := P(F > fA) ≈ 1− ΦF(fA; νA, νres)

8 Render Decision:
(by SW) If pA ≤ α then reject HA

0 for HA
A , else accept HA

0 .
(by hand) If fA ≥ f ∗νA,νres;α then reject HA

0 for HA
A , else accept HA

0 .
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1F bcrANOVA F-Test (Summary Table)

1F ucrANOVA Table (Significance Level α)

Variation
Source df Sum of

Squares
Mean

Square
F Stat
Value P-value Decision

Factor A νA SSA MSA fA pA Acc/Rej HA
0

Unknown νres SSres MSres

Total ν SStotal
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1F ucrANOVA (Expected Mean Squares)

Proposition
Given 1-factor experiment satisfying the 1F ucrANOVA assumptions. Then:

(i) E[MSres] = σ2

(ii) E[MSA] = σ2 +
1

I − 1

∑
i

Ji(α
A
i )2

PROOF: Omitted as it’s similar (but a bit more tedious) to 1F bcrANOVA.
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1F ucrANOVA (Point Estimators of σ2)

Proposition
(Point Estimation of Mean Squares)
Given 1F balanced experiment satisfying 1F ucrANOVA assumptions. Then:

(i) MSres is always an unbiased point estimator of the population variance:

H0 is indeed true OR H0 is indeed false =⇒ E[MSres] = σ2

(ii) If the status quo prevails, MSA is an unbiased estimator of pop. variance:

H0 is indeed true =⇒ E[MSA] = σ2

(iii) If the status quo fails, MSA tends to overestimate population variance:

H0 is indeed false =⇒ E[MSA] > σ2

PROOF: Omitted as it’s similar (but a bit more tedious) to 1F bcrANOVA.
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Simultaneous Q-CI’s for Mean Differences

Suppose a 1F ucrANOVA results in the rejection of null hypothesis HA
0 .

Then, at least two of the population means significantly differ, but ANOVA
does not indicate which means significantly differ.

Therefore, a post-hoc procedure must be used:

Proposition
Given an experiment with I groups each of size Ji (n :=

∑
i Ji) such that the

1F ucrANOVA assumptions are satisfied.

Then the approximate simultaneous 100(1− α)% Q-CI’s for all mean
differences µi − µj are:

(xi• − xj•)± q∗I,νres;α
·

√
MSres ·

1
2

(
1
Ji

+
1
Jj

)
∀i < j (νres := n− I)

If Q-CI for µi − µj does not contain zero, then µi & µj significantly differ.

Unfortunately, computing all the Q-CI’s is tedious and wasteful.
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Tukey-Kramer Complete Pairwise Post-Hoc Comp.
Fortunately, the following procedure is far more efficient:

Proposition
Given an experiment with I groups each of size Ji (n :=

∑
i Ji, νres := n− I)

where 1F ucrANOVA rejects HA
0 at level α and the Ji’s only differ slightly.

Then, to determine which population means significantly differ:
1 Sort the group means in ascending order: x(1)• ≤ x(2)• ≤ · · · ≤ x(I)•

2 Find significant difference widths w(ij) = q∗I,νres;α
·
√

MSres · 1
2

(
1

J(i)
+ 1

J(j)

)
3 If x(j)• ∈

[
x(i)•, x(i)• + w(ij)

]
, underline x(i)• and x(j)• with new line.

4 Repeat STEP 1 with all sorted mean pairs x(i)•, x(j)• such that i < j.

Interpretation:

Group means sharing a common underline implies they are not
significantly different from one another.
Group means not sharing a common underline implies they are
significantly different from one another.
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PART III

PART III:

1-Factor ANOVA Model (Adequacy) Checking

Standardized Residuals

Checking for Outliers

Checking Normality Assumption

Checking Independence Assumption

Checking Equal Variances Assumption
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1F ANOVA Model Checking: Standardized Residuals

Definition
(Standardized Residuals)

Given a 1-factor experiment, either balanced or only slightly unbalanced:

Xij = µ+ αA
i + Eij

Moreover, suppose 1F bcrANOVA / ucrANOVA was performed accordingly.

Then, the standardized residuals† are defined to be:

zres
ij :=

xres
ij√

SSres/(n− 1)

An alternative definition‡ that’s reasonable but not used here is:
xres

ij√
MSres

†Dean, Voss et al, Design & Analysis of Experiments, 2nd Ed, 2017. (§5.2.1)
‡Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.4.1)
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ANOVA Model Checking: No Outliers
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ANOVA Model Checking: Some (Possible) Outliers

Measurements between two and three std deviations are possibly outliers.
Measurements beyond three standard deviations are definitely outliers.
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ANOVA Model Checking: Outlier Mitigation

Q: How to handle outliers when performing 1F ANOVA?

A: For each outlier:

If outlier was due to measurement/calculation error, correct it†‡.
Else, outlier may be due to violation(s) of the ANOVA assumptions†.
Else, the 1-factor linear model may be insufficient†:

Consider building a 2-Factor ANOVA model... (covered in Ch11)
...or an Analysis of Covariance (ANCOVA) model (beyond scope of course)

“We should be careful not to reject or discard an outlying observation unless
we have reasonably non-statistical grounds for doing so. At worst, you may
end up with two analyses; one with the outlier and one without.”‡

†Dean, Voss et al, Design & Analysis of Experiments, 2nd Ed, 2017. (§5.4)
‡Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.4.1)
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ANOVA Model Checking: Normality Satisfied
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ANOVA Model Checking: Normality Violated
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ANOVA Model Checking: Normality Mitigation

Q: How to perform a 1F ANOVA when the Normality Assumption is violated?

A: Perform a 1F Kruskal-Wallis♠ ANOVA which does not assume normality.

To be covered in Chapter 15.

♠W. Kruskal, W. Wallis, “Use of Ranks in One-Criterion Variance Analysis”,
Journal of the American Statistical Association, 47 (1952), 583-621.

Josh Engwer (TTU) 1F Unbalanced Completely Randomized ANOVA 2018 34 / 44



ANOVA Model Checking: Independence Satisfied

There’s no discernible pattern.
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ANOVA Model Checking: Independence Violated

There’s a clear (cycle) pattern.
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ANOVA Model Checking: Independence Violated

There’s a clear (fan) pattern.
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ANOVA Model Checking: Independence Mitigation

Q: How to perform a 1F ANOVA when the Independence is violated?

A: This is where things become frustrating:

If randomization was not used, redo the experiment using randomization‡.
If randomization was used, then use a more complicated model†:

2-Factor ANOVA – to be covered in Ch11
Analysis of Covariance (ANCOVA) – beyond scope of this course

†Dean, Voss et al, Design & Analysis of Experiments, 2nd Ed, 2017. (§5.5)
‡Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.4.2)
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ANOVA Model Checking: Equi-Variance Satisfied
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ANOVA Model Checking: Equi-Variance Violated
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ANOVA Model Checking: Equi-Variance Mitigation

Q: How to perform 1F ANOVA when Equi-Variance Assumption is violated?

A: Perform an appropriate variance-stabilizing data transformation†‡♣ first:

log X, log(1 + X), log(1 + min xij + X),√
X,
√

0.5 + X,
√

X +
√

1 + X,
1/X, 1/

√
X, arcsin(

√
X), 2 arcsin(

√
X ± 1/2m)

If data are counts or Poisson-like, use a square-root transformation†‡♣.
If data are proportions or Binomial-like, use an arcsine transformation†♣.
When in doubt, plot log si vs. log(xi•) to help determine data transformation†‡.
If data transformations don’t help much, a more robust method is necessary♥.

†Dean, Voss et al, Design & Analysis of Experiments, 2nd Ed, 2017. (§5.6.2)
‡D.C. Montgomery, Design & Analysis of Experiments, 7th Ed, 2009. (§3.4.3)
♣D.C. Howell, Statistical Methods for Psychology, 7th Ed, 2010. (§11.9)
♥R.J. Grissom, “Heterogeneity of Variance in Clinical Data”, Journal of
Consulting & Clinical Psychology, 68 (2000), 155-165.

NOTE: Data transformations are beyond the scope of this course.
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Textbook Logistics for Section 10.3

CONCEPT TEXTBOOK
NOTATION

SLIDES/OUTLINE
NOTATION

Expected Value E(X) E[X]
Variance V(X) V[X]

Sum of Squares of Factor A SSTr SSA

Mean Square of Factor A MSTr MSA

Sum of Squares of Residuals SSE SSres

Mean Square of Residuals MSE MSres

Effect of ith Factor A αi αA
i

Null Hypothesis for Factor A H0 HA
0

Alt. Hypothesis for Factor A HA HA
A
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Textbook Logistics for Section 10.3

Ignore “β for the F Test” section.
Used to compute the power of a particular ANOVA.
Also used to determine minimum group sizes Ji to ensure a
sufficiently-powerful ANOVA.

Ignore “Relationship of the F Test to the t Test” section.
For I = 2, the pooled t-test is equivalent to 1-Factor ANOVA.
For I = 2, the independent t-test is more flexible than 1-Factor ANOVA.
For I > 2, there’s no reliable general test without assuming equal variances.

Ignore “A Random Effects Model” section.
Occurs when the levels of Factor A are chosen for an experiment out of a
larger set (or population) of levels rather than choosing all possible levels.
The resulting linear model now has random variables Ai ∼ Normal(0, σ2

A) for
Factor A instead of model parameters αA

i ∈ R such that
∑

i α
A
i = 0.

The corresponding hypotheses are now: HA
0 : σ2

A = 0
HA

A : σ2
A > 0

The ANOVA procedure is identical as for fixed effects linear models.
However, model assumption checking is subtler and trickier.
Also, point estimation of σ2 is somewhat different.
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Fin

Fin.
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