1-Factor Random Effects ANOVA

Engineering Statistics II Section 10.E

Josh Engwer

TTU

2019

PART I:

1-Factor Balanced Completely Randomized ANOVA (1F bcrANOVA)

Random Effects Model Assumptions

Random Effects Linear Model

F-Test Procedure

Expected Mean Squares

Point Estimators of σ^2 & σ_A^2

1-Factor ANOVA Random Effects Model Assumptions

Random effects means the levels of factor A are randomly selected.

Proposition

(1F bcrANOVA Random Effects Model Assumptions)

- (<u>1</u> Desired Factor) Factor A has I levels.
- (*Factor Levels are Randomly Selected*) AKA Random Effects.
- (<u>Balanced Replication in Groups</u>) Each group has J > 1 units.
- (Distinct Exp. Units) All IJ units are distinct from each other.
- (<u>R</u>andom <u>A</u>ssignment <u>a</u>cross <u>G</u>roups)
- (Independence) All measurements on units are independent.
- (*Normality*) All groups are approximately normally distributed.
- (*Equal Variances*) All groups have approximately same variance.

Mnemonic: 1DF FLaRS BRiG DEU | RAaG | I.N.EV

1F bcrANOVA Random Effects Linear Model

Random effects means the levels of factor A are randomly selected.

1F bcrANOVA Random Effects Linear Model		
$I \equiv$	# groups to compare	
$J \equiv$	# measurements in each group	
$X_{ij} \equiv$	rv for <i>j</i> th measurement taken from <i>i</i> th group	
$\mu_i \equiv$	Mean of <i>i</i> th population or true average response from <i>i</i> th group	
μ =	Common population mean or true average overall response	
$A_i \equiv$	rv for deviation from μ due to i^{th} group	
$E_{ij} \equiv$	Deviation from μ due to random error	
<u>ASSUMPTIONS:</u> $E_{ij} \stackrel{iid}{\sim} \text{Normal}(0, \sigma^2), A_i \stackrel{iid}{\sim} \text{Normal}(0, \sigma_A^2)$		
$A_i \& E_{ij}$ are all mutually independent of each other		
;		
$X_{ij}=\mu+A_i+E_{ij}$		
$H_0^{\scriptscriptstyle A}:\;\sigma_{\scriptscriptstyle A}^2=0$		
$H_A^{\scriptscriptstyle A}:\;\sigma_A^2>0$		

1F bcrANOVA Random Effects F-Test

1 Determine df's: n = IJ, $\nu_A = I - 1$, $\nu_{res} = I(J - 1)$ 2 Compute Group Means: $\bar{x}_{i\bullet} := \frac{1}{I} \sum_i x_{ii}$ 3 Compute Grand Mean: $\bar{x}_{\bullet\bullet} = \frac{1}{L} \sum_{i} \bar{x}_{i\bullet}$ • Compute SS_{res} := $\sum_{ii} (x_{ii}^{res})^2 = \sum_i \sum_i (x_{ii} - \overline{x}_{i\bullet})^2$ **Outpute SS**_A := $\sum_{ii} (\hat{\alpha}_i^A)^2 = \sum_i \sum_i (\bar{x}_{i\bullet} - \bar{x}_{\bullet\bullet})^2$ **6** Compute Mean Squares: $MS_{res} := \frac{SS_{res}}{\mu}$, $MS_A := \frac{SS_A}{\mu}$ Ocompute Test Statistic Value: $f_A = \frac{MS_A}{MS_{end}}$ By hand, lookup $f^*_{\nu_A,\nu_{\rm rec};\alpha}$ Ompute F-cutoff/P-value: By SW, compute $p_A = 1 - \Phi_F(f_A; \nu_A, \nu_{res})$ **9** Render Decision: If $f_A \ge f^*_{\nu_A,\nu_{res};\alpha}$, then reject H^A_0 ; else accept H^A_0 . If $p_A \le \alpha$, then reject H^A_0 ; else accept H^A_0 .

1F bcrANOVA Random Effects (Expected Mean Squares)

Proposition

Given 1F experiment satisfying 1F bcrANOVA random effects assumptions. Then:

(i)
$$\mathbb{E}[MS_{res}] = \sigma^2$$

(ii) $\mathbb{E}[MS_A] = \sigma^2 + J\sigma_A^2$

1F bcrANOVA Random Effects (Point Estimators of σ^2 & σ_A^2)

Proposition

Given 1F experiment satisfying 1F bcrANOVA random effects assumptions. Then:

$$(i)$$
 $\hat{\sigma}^2 = MS_{res}$

(*ii*)
$$\hat{\sigma}_A^2 = (MS_A - MS_{res})/J$$

PART II:

1-Factor Unbalanced Completely Randomized ANOVA (1F ucrANOVA)

Random Effects Model Assumptions

Random Effects Linear Model

F-Test Procedure

Expected Mean Squares

Point Estimators of σ^2 & σ_A^2

1F ucrANOVA (Random Effects Model Assumptions)

Proposition

(1F ucrANOVA Random Effects Model Assumptions)

- (<u>1</u> Desired Factor) Factor A has I levels.
- (*Factor Levels are Randomly Selected*) AKA Random Effects.
- (<u>Replication in Groups</u>) Each group has J_i > 1 units.
- (**<u>D</u>istinct <u>Exp. Units</u>) All \sum_i J_i units are distinct from each other.**
- (<u>R</u>andom <u>A</u>ssignment <u>a</u>cross <u>G</u>roups)
- (Independence) All measurements on units are independent.
- (*Normality*) All groups are approximately normally distributed.
- (*Equal Variances*) All groups have approximately same variance.

Mnemonic: 1DF FLaRS RiG DEU | RAaG | I.N.EV

1F ucrANOVA Random Effects Linear Model

Random effects means the levels of factor A are randomly selected.

1F ucrANOVA Random Effects Linear Model		
	# groups to compare	
$J_i \equiv$	# measurements in <i>i</i> th group	
$X_{ij} \equiv$	rv for <i>jth</i> measurement taken from <i>ith</i> group	
$\mu_i \equiv$	Mean of <i>i</i> th population or true average response from <i>i</i> th group	
μ ≡	Common population mean or true average overall response	
$A_i \equiv$	rv for deviation from μ due to i^{th} group	
$E_{ij} \equiv$	Deviation from μ due to random error	
ASSUMPTIONS: $E_{ij} \stackrel{iid}{\sim} \text{Normal}(0, \sigma^2), A_i \stackrel{iid}{\sim} \text{Normal}(0, \sigma_A^2)$ $A_i \& E_{ij}$ are all mutually independent of each other		
$X_{ij} = \mu + A_i + E_{ij}$		
$egin{array}{lll} H^n_0 : & \sigma^2_A = 0 \ H^A_A : & \sigma^2_A > 0 \end{array} \end{array}$		

1F ucrANOVA Random Effects F-Test

- **1** Determine df's: $n := \sum_i J_i$, $\nu_A = I 1$, $\nu_{res} = n I$
- Compute Group Means: $\bar{x}_{i\bullet} := \frac{1}{J_i} \sum_{j=1}^{J_i} x_{ij}$
- Sompute Grand Mean: $\bar{x}_{\bullet\bullet} := \frac{1}{I} \sum_{i} \bar{x}_{i\bullet}$
- Compute SS_{res} := $\sum_i \sum_{j=1}^{J_i} (x_{ij}^{res})^2 = \sum_i \sum_{j=1}^{J_i} (x_{ij} \overline{x}_{i\bullet})^2$ and MS_{res} := $\frac{SS_{res}}{\nu_{res}}$
- Compute SS_A := $\sum_i \sum_{j=1}^{J_i} (\hat{\alpha}_i^A)^2 = \sum_i \sum_{j=1}^{J_i} (\bar{x}_{i\bullet} \bar{x}_{\bullet\bullet})^2$ and MS_A := $\frac{SS_A}{\nu_A}$
- **(** Compute Test Statistic Value: $f_A = \frac{MS_A}{MS_{res}}$
- **Outpute P-value:** $p_A := \mathbb{P}(F > f_A) \approx 1 \Phi_F(f_A; \nu_A, \nu_{res})$

Render Decision:

(by SW) If $p_A \leq \alpha$ (by hand) If $f_A \geq f^*_{\nu_A,\nu_{res};\alpha}$ then reject H_0^A for H_A^A , else accept H_0^A . then reject H_0^A for H_A^A , else accept H_0^A .

1F ucrANOVA Random Effects (Expected Mean Squares)

Proposition

Given 1F experiment satisfying 1F ucrANOVA random effects assumptions. Then:

(i)
$$\mathbb{E}[MS_{res}] = \sigma^2$$

(*ii*)
$$\mathbb{E}[MS_A] = \sigma^2 + \frac{1}{I-1} \left(n - \frac{\sum_i J_i^2}{n}\right) \sigma_A^2, \qquad [n := \sum_i J_i]$$

1F ucrANOVA Random Effects (Point Estimators of σ^2 & σ_A^2)

Proposition

Given 1F experiment satisfying 1F ucrANOVA random effects assumptions. Then:

(i)
$$\hat{\sigma}^2 = MS_{res}$$

(ii) $\hat{\sigma}^2_A = \frac{MS_A - MS_{res}}{\frac{1}{I-1}\left(n - \frac{\sum_i J_i^2}{n}\right)}$ $[n := \sum_i J_i]$

Fin.