2-Factor Randomized Complete Block ANOVA

Engineering Statistics II

 Section 11.1Josh Engwer

TTU

2018

PART I:

Nuisance Factors
Randomized Blocking

Nuisance Factors (Definition \& Types)

Alas, undesirable factors may affect an experiment:

Definition

(Nuisance Factor)
Given a designed experiment.
An uninteresting factor that may affect the response is a nuisance factor.
The three types of nuisance factors are dealt with via different techniques ${ }^{\ddagger}$:

NUISANCE	MITIGATION:	COVERED IN
FACTOR TYPE:	Randomization \&	Randomization: Yes Double-Blinding: No
Unknown \&	Radic\| Double-Blinding	No
Known \&	Analysis of Covariance	
(ANCOVA)	Yes	
 Controllable	Randomized Blocking	(Next slides)

"Block what you can, randomize what you cannot." - G.E.P. Box, 1978
\ddagger D.C. Montgomery, Design \& Analysis of Experiments, $7^{\text {th }}$ Ed, Wiley, 2009. (§4.1)

Nuisance Factors (Examples)

Alas, undesirable factors may affect an experiment ${ }^{\ddagger}$:

NUISANCE	
FACTOR TYPE:	EXAMPLES:
 Uncontrollable	Bias of Designer(s) of Exp. Bias of Administrator(s) of Exp. Bias of Human Subject(s) in Exp.
 Uncontrollable	Outside Weather (temp, humidity, wind, ...) Ambient Temp. in Large Warehouse Life Experience of Human Subjects
	Origin/Purity of Raw Material Batches
	Ambient Temp. in Small Room
Known \&	Accuracy/Precision of Workers
Controllable	Accuracy/Precision of Machines
	Time of Day when Exp. is Conducted
	Manufacturer of Comparable Tools
	Age Group of Human Subjects

"Block what you can, randomize what you cannot." - G.E.P. Box, 1978
\ddagger D.C. Montgomery, Design \& Analysis of Experiments, $7^{\text {th }}$ Ed, Wiley, 2009. (§4.1)

Nuisance Factors (Biases)

Bias in an experiment is minimized via Randomization \& Double-Blinding:

NUISANCE	EXAMPLES:
FACTOR TYPE:	Bias of Designer(s) of Exp.
Unknown \&	Bias of Administrator(s) of Exp.
Uncontrollable	Bias of Human Subject(s) in Exp.

Since randomization of experiments encountered in this course is always assumed, we will not delve into the details of bias.

However, interested readers may consult the following papers:
H. Malone, H. Nicholl, C. Tracey, "Awareness and Minimisation of Systematic Bias in Research", British Journal of Nursing, 23 (2014), 279-282.
D. Sackett, "Bias in Analytic Research", J. Chronic Diseases, 32 (1979), 51-63.
A.-M. Šimundić, "Bias in Research", Biochemia Medica, 23 (2013), 12-15.

Randomized Blocking (Motivation)

Randomized blocking ${ }^{\boldsymbol{\wedge} \&}$ controls for the presence of a nuisance factor.
1-Factor Complete Randomization:

- Collect experimental units (EU's).
- Randomly assign the EU's to the levels of Factor A.
- Measure each EU appropriately.

2-Factor Complete Randomization:

- Collect experimental units (EU's).
- Randomly assign the EU's to the level combinations of Factors A \& B.
- Measure each EU appropriately.

2-Factor Randomized Blocking:

- Collect experimental units (EU's).
- Identify relevant nuisance factor \& call it Block Factor B.
- Determine the nuisance factor level of each EU.
- Assign all the EU's with equal nuisance factor level to its own block.
- Within each block, randomly assign EU's to levels of Factor A.
- Measure each EU appropriately.
${ }^{\omega}$ R.A. Fisher, "The Arrangement of Field Experiments", J. Ministry Agr., 33 (1926), 503-513.
${ }^{*}$ R.A. Fisher, The Design of Experiments, Oliver \& Boyd, 1935. (Ch4)

PART II:

2-FACTOR RANDOMIZED COMPLETE BLOCK ANOVA (2F rcbANOVA)

2-Factor Randomized Complete Block Design
Fixed Effects Model Assumptions
Fixed Effects Linear Model
Sums of Squares Partitioning
F-Test Procedure
Expected Mean Squares
Point Estimators of σ^{2}
Effect Size Measures
Post-Hoc Comparisons

2-Factor Randomized Complete Block Design

An example randomized complete block design entails the following:

- Collect 6 relevant EU's: $\mathrm{EU}_{1}, \mathrm{EU}_{2}, \mathrm{EU}_{3}, \mathrm{EU}_{4}, \mathrm{EU}_{5}, \mathrm{EU}_{6}$
- Determine EUs' nuisance levels (which is in parentheses):

$$
\mathrm{EU}_{1(3)}, \mathrm{EU}_{2(1)}, \mathrm{EU}_{3(1)}, \mathrm{EU}_{4(2)}, \mathrm{EU}_{5(3)}, \mathrm{EU}_{6(2)}
$$

- Produce a random shuffle sequence for each nuisance level:

$$
\text { Lvl 1: }(3 ; 2), \quad \operatorname{Lvl} 2:(4 ; 6), \quad \operatorname{Lvl} 3:(5 ; 1)
$$

- Use random shuffle sequence to assign the EU's into the 6 groups:

| BLOCK B:
 FACTOR A:$\quad \downarrow$ | Level 1 | Level 2 | Level 3 |
| :---: | :---: | :---: | :---: | :---: |
| Level 1 | $\mathrm{EU}_{3(1)}$ | $\mathrm{EU}_{4(2)}$ | $\mathrm{EU}_{5(3)}$ |
| Level 2 | $\mathrm{EU}_{2(1)}$ | $\mathrm{EU}_{6(2)}$ | $\mathrm{EU}_{1(3)}$ |

- Measure each EU appropriately (note the change in notation):

| BLOCK B:
 FACTOR A:
 FA
 \downarrow | Level 1
 $\left(x_{\bullet 1}\right)$ | Level 2
 $\left(x_{\bullet 2}\right)$ | Level 3
 $\left(x_{\bullet}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| Level 1 $\left(x_{1 \bullet}\right)$ | x_{11} | x_{12} | x_{13} |
| Level 2 $\left(x_{\bullet \bullet}\right)$ | x_{21} | x_{22} | x_{23} |

2F rcbANOVA Fixed Effects Model Assumptions

Proposition

- (1 Desired Factor) The sole factor of interest has I levels.
- (1 Nuisance Factor) The sole nuisance factor has J levels.
- (All Factor Levels are Considered) AKA Fixed Effects.
- (1 Measurement per Group) Each of the IJ groups has one exp unit.
- (Random Assignment within Blocks) such that (s.t.)
- (Nuisance Same in 브lock) Within block, nearly same nuisance values.
- (Nuisance Differs across Blocks) Blocks differ by nuisance value.
- (Independence) All measurements on units are independent.
- (Normality) All IJ groups are approximately normally distributed.
- (Equal Variances) All IJ groups have approximately same variance.
- (Factor and Block are not Interactive)

1DF 1NF AFLaC 1MpG | RAwB s.t. NSiB NDaB | I.N.EV FaBanl

2-Factor rcbANOVA Linear Model (Fixed Effects)

2F rcbANOVA Fixed Effects Linear Model

$(I, J) \quad \equiv$ (\# levels of factor A, \# levels of blocked nuisance factor B)
$X_{i j} \quad \equiv$ rv for observation at (i, j)-level of (factor A, block B)
$\mu \equiv$ Mean avg response over all levels of (factor A, block B)
$\left(\alpha_{i}^{A}, \alpha_{j}^{[B]}\right) \equiv\left(\right.$ Effect of $i^{\text {th }}$-level factor A, Effect of $j^{\text {th }}$-level block B)
$E_{i j} \equiv$ Deviation from μ due to random error
ASSUMPTIONS: $\quad E_{i j} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right)$

$$
X_{i j}=\mu+\alpha_{i}^{A}+\alpha_{j}^{[B]}+E_{i j} \quad \text { where } \quad \sum_{i} \alpha_{i}^{A}=\sum_{j} \alpha_{j}^{[B]}=0
$$

$H_{0}^{A}:$	All	$\alpha_{i}^{A}=0$
$H_{A}^{A}:$	Some	$\alpha_{i}^{A} \neq 0$

$X_{i j} \stackrel{I N D}{\sim} \ldots \equiv$ rv's $X_{i j}$ are independently distributed as ...
$E_{i j} \stackrel{i i d}{\sim} \ldots \equiv$ rv's $E_{i j}$ are independently and identically distributed as ...

Sums of Squares as a "Partitioning" of Variation Explanation for 2F rcbANOVA

$$
\begin{aligned}
& \underbrace{\mathrm{SS}_{\text {total }}}_{\begin{array}{c}
\text { Total Variation } \\
\text { in Experiment }
\end{array}}=\underbrace{\mathrm{SS}_{A}}_{\begin{array}{c}
\text { Variation due } \\
\text { to Factor } A
\end{array}}+\underbrace{\mathrm{SS}_{[B]}}_{\begin{array}{c}
\text { Variation due } \\
\text { to Blocks } B
\end{array}}+\underbrace{\mathrm{SS}_{\text {res }}}_{\begin{array}{c}
\text { Unexplained } \\
\text { Variation }
\end{array}} \\
& \sum_{i j}\left(x_{i j}-\hat{\mu}\right)^{2}=\sum_{i j}\left(\hat{\alpha}_{i}^{A}\right)^{2}+\sum_{i j}\left(\hat{\alpha}_{j}^{[B]}\right)^{2}+\sum_{i j}\left(x_{i j}^{\text {res }}\right)^{2} \\
& \underbrace{\nu}_{\begin{array}{c}
\text { Total dof's in } \\
\text { Experiment }
\end{array}}=\underbrace{\nu_{A}}_{\begin{array}{c}
\text { Factor } A^{\text {dof }^{\prime} s}
\end{array}}+\underbrace{\nu_{[B]}}_{\begin{array}{c}
\text { Blocks } B \\
\text { dof }^{\prime} s
\end{array}}+\underbrace{\nu_{\text {res }}}_{\begin{array}{c}
\text { Within Blocks } \\
\text { dof's }
\end{array}} \\
& \nu=I J-1, \quad \nu_{A}=I-1, \quad \nu_{[B]}=J-1, \quad \nu_{\text {res }}=(I-1)(J-1)
\end{aligned}
$$

Remember, randomization occurs only within blocks ${ }^{\ddagger}$.
\ddagger D.C. Montgomery, Design \& Analysis of Experiments, $7^{\text {th }}$ Ed, Wiley, 2009. (§4.1)

2F rcbANOVA F-Test

(1) $\nu_{A}=I-1, \nu_{[B]}=J-1, \nu_{\text {res }}=(I-1)(J-1)$
(2) $\bar{x}_{i \bullet}:=\frac{1}{J} \sum_{j} x_{i j}, \quad \bar{x}_{\bullet j}:=\frac{1}{I} \sum_{i} x_{i j}$
(3) $\bar{x}_{\bullet \bullet}:=\frac{1}{I J} \sum_{i} \sum_{j} x_{i j}$
(9) $\left\{\begin{array}{l}\mathrm{SS}_{\text {res }}:=\sum_{i j}\left(x_{i j k}^{\text {res }}\right)^{2}=\sum_{i} \sum_{j}\left(x_{i j}-\bar{x}_{\bullet \bullet}-\bar{x}_{\bullet j}+\bar{x}_{\bullet \bullet}\right)^{2} \\ \left.\mathrm{SS}_{A}:=\sum_{i j} \hat{\alpha}_{i}^{A}\right)^{2}=\sum_{i} \sum_{j}\left(\bar{x}_{\bullet \bullet}-\bar{x}_{\bullet \bullet}\right)^{2} \\ \mathrm{SS}_{[B]}:=\sum_{i j}\left(\hat{\alpha}_{j}^{[B]}\right)^{2}=\sum_{i} \sum_{j}\left(\bar{x}_{\bullet j}-\bar{x}_{\bullet \bullet}\right)^{2}\end{array}\right.$
(Optional) $\mathrm{SS}_{\text {total }}:=\sum_{i j}\left(x_{i j}-\hat{\mu}\right)^{2}=\sum_{i} \sum_{j}\left(x_{i j}-\bar{x}_{\bullet \bullet}\right)^{2}$

2F rcbANOVA F-Test

(- $\mathrm{MS}_{A}=\frac{\mathrm{SS}_{A}}{\nu_{A}}, \mathrm{MS}_{[B]}=\frac{\mathrm{SS}_{[B]}}{\nu_{[B]}}, \mathrm{MS}_{\text {res }}=\frac{\mathrm{SS}_{\text {res }}}{\nu_{\text {res }}}$

- $f_{A}=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{\text {res }}}, f_{[B]}=\frac{\mathrm{MS}_{[B]}}{\mathrm{MS}_{\text {res }}}$
$\boldsymbol{0}\left\{\begin{array}{c}p_{A}:=\mathbb{P}\left(F>f_{A}\right) \approx 1-\Phi_{F}\left(f_{A} ; \nu_{A}, \nu_{r e s}\right) \\ p_{[B]}:=\mathbb{P}\left(F>f_{[B]}\right) \approx 1-\Phi_{F}\left(f_{[B]} ; \nu_{[B]}, \nu_{\text {res }}\right)\end{array}\right.$
- $\left\{\begin{array}{lll}\text { If } & p_{A} \leq \alpha & \text { then reject } H_{0}^{A} \text {, else accept } H_{0}^{A} . \\ \text { If } & p_{[B]} \leq \alpha & \text { then the blocking reduced } M S_{\text {res }} \text { vs. 1F ANOVA. }\end{array}\right.$

2F rcbANOVA Table

2-Factor rcbANOVA Table (Significance Level α)

Variation Source	df	Sum of Squares	Mean Square	F Stat Value	P-value	Decision
Factor A	ν_{A}	SS_{A}	MS_{A}	f_{A}	p_{A}	Acc/Rej H_{0}^{A}
Blocks B	$\nu_{[B]}$	$\mathrm{SS}_{[B]}$	$\mathrm{MS}_{[B]}$	$f_{[B]}$	$p_{[B]}$	$*$
Error	$\nu_{r e s}$	$\mathrm{SS}_{\text {res }}$	$\mathrm{MS}_{\text {res }}$			
Total	ν	$\mathrm{SS}_{\text {total }}$				

*Computing $\mathrm{SS}_{[B]}, \mathrm{MS}_{[B]}, f_{[B]}, p_{[B]}$ is optional but recommended as $p_{[B]} \leq \alpha$ implies that the blocking choice results in a significantly smaller $\mathrm{MS}_{\text {res }}$ than using 1F bcrANOVA, thus the blocked nuisance factor has a significant effect.

On the other hand, if $p_{[B]}>\alpha$, then the particular blocking is not beneficial. The remedy is to block on a (hopefully) more relevant nuisance factor.

2F rcbANOVA (Expected Mean Squares)

Proposition

Given 2-factor experiment satisfying the 2F rcbANOVA assumptions. Then:

$$
\begin{aligned}
\mathbb{E}\left[M S_{\text {res }}\right] & =\sigma^{2} \\
\mathbb{E}\left[M S_{A}\right] & =\sigma^{2}+\frac{J}{I-1} \sum_{i}\left(\alpha_{i}^{A}\right)^{2} \\
\mathbb{E}\left[M S_{[B]}\right] & =\sigma^{2}+\frac{I}{J-1} \sum_{j}\left(\alpha_{j}^{[B]}\right)^{2}
\end{aligned}
$$

PROOF: Omitted as it's similar (and simpler) to 2F bcrANOVA.

Mean Squares as Point Estimators of σ^{2}

Proposition

(Point Estimation of Mean Squares)
Given a $2 F$ balanced exp. satisfying the $2 F$ rcbANOVA assumptions. Then:
(i) Regardless of the truthness of $H_{0}^{A}, H_{0}^{[B]} \quad \Longrightarrow \mathbb{E}\left[M S_{\text {res }}\right]=\sigma^{2}$
(ii) H_{0}^{A} is true $\Longrightarrow \mathbb{E}\left[M S_{A}\right]=\sigma^{2}, \quad H_{0}^{A}$ is false $\Longrightarrow \mathbb{E}\left[M S_{A}\right]>\sigma^{2}$

PROOF: Omitted as it's similar (and simpler) to 2F bcrANOVA.

2F rcbANOVA (Effect Size Measures)

YEAR	NAME	MEASURE
$1925{ }^{\dagger}$	Fisher (Eta-Squared)	
1965^{\ddagger}	$\begin{aligned} & \text { Cohen }^{[G W],[L H]} \\ & \left(\text { Partial } \eta^{2}\right) \end{aligned}$	
$\hat{\eta}_{A}^{2}+\hat{\eta}_{[B]}^{2}+\hat{\eta}_{\text {res }}^{2}=1 \quad$ but $\hat{\eta}_{(A)}^{2}+\hat{\eta}_{([B])}^{2}>1$		

[^0]
2F rcbANOVA (Effect Size Interpretation)

EFFECT SIZE VALUE:	INTERPRETATION:
$\hat{\eta}_{A}^{2}:=\frac{\mathrm{SS}_{A}}{\mathrm{SS}_{A}+\mathrm{SS}_{[B]}+\mathrm{SS}_{\text {res }}}=0.38$	38% of the variation in the reponse is due to Factor A
$\hat{\eta}_{[B]}^{2}:=\frac{\mathrm{SS}_{[B]}}{\mathrm{SS}_{A}+\mathrm{SS}_{[B]}+\mathrm{SS}_{\text {res }}}=0.02$	2% of the variation in the reponse is due to Block B
$\hat{\eta}_{\text {res }}^{2}:=\frac{\mathrm{SS}_{\text {res }}}{\mathrm{SS}_{A}+\mathrm{SS}[[B]+\mathrm{SS} \text { res }}=0.60$	60% of the variation in the reponse is unexplained with experiment
$\hat{\eta}_{[A)}^{2}:=\frac{\mathrm{SS}_{A}}{\mathrm{SS}_{A}+\mathrm{SS}_{\text {res }}}=0.43$	43% of the variation possibly due to Factor A is actually due to Factor A
$\hat{\eta}_{[[B])}^{2}:=\frac{\mathrm{SS}_{[B]}}{\mathrm{SS}_{[B]}+\mathrm{SS}_{\text {res }}}=0.72$	72% of the variation possibly due to Block B is actually due to Block B

2F rcbANOVA (More Effect Size Measures)

YEAR	NAME	MEASURE
$1963{ }^{\dagger}$	Hays (Omega-Squared)	
$1979{ }^{\ddagger}$	Keren-Lewis (Partial ω^{2})	

${ }^{\dagger}$ W.L. Hays, Statistics for Psychologists, 1963.

${ }^{\ddagger}$ G. Keren, C. Lewis, "Partial Omega Squared for ANOVA Designs",
Educational \& Psychological Measurement, 39 (1979), 119-128.

2F rcbANOVA Tukey Post-Hoc Comparisons

Suppose a 2-Factor rcbANOVA results in the rejection of H_{0}^{A}. Then, at least two of the pop. means significantly differ, but which ones?

Proposition

Given a 2-factor experiment with I levels of factor A and J levels of blocked nuisance factor B where $2 F$ rcbANOVA rejects H_{0}^{A} at significance level α. Then, to find which levels of factor A significantly differ:
(1) Compute the factor A significant difference width: $\left[\nu_{\text {res }}:=(I-1)(J-1)\right]$

$$
w_{A}=q_{I, \nu_{r e s} ; \alpha}^{*} \cdot \sqrt{M S_{r e s} / J}
$$

(2) Sort the I factor A level means in ascending order:

$$
\bar{x}_{(1) \bullet} \leq \bar{x}_{(2) \bullet} \leq \cdots \leq \bar{x}_{(I)} \bullet
$$

(3) For each sorted group mean $\bar{x}_{(i)}$:

- If $\bar{x}_{(i+1)} \notin\left[\bar{x}_{(i) \bullet}, \bar{x}_{(i) \bullet}+w_{A}\right]$, repeat STEP 3 with next sorted mean.
- Else, underline $\bar{x}_{(i)}$ • and all larger means within a distance of w_{A} w/ new line.

NOTE: Tukey Post-Hoc Comp's are used only for factor A, not for block B.

Textbook Logistics for Section 11.1

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Sum of Squares of Factor A	SSTr	SS_{A}
Mean Square of Factor A	MSTr	MS_{A}
Sum of Squares of Error	SSE	$\mathrm{SS}_{\text {res }}$
Mean Square of Error	MSE	$\mathrm{MS}_{\text {res }}$
Effect of $i^{\text {th }}$ Factor A	α_{i}	α_{i}^{A}
Null Hypothesis for Factor A	$H_{0 A}$	H_{0}^{A}
Alt. Hypothesis for Factor A	$H_{a A}$	H_{A}^{A}
Expected Value	$E(X)$	$\mathbb{E}[X]$
Variance	$V(X)$	$\mathbb{V}[X]$

- Ignore "Models for Random Effects" section.
- The ANOVA procedure is identical as for fixed effects linear models.
- However, model assumption checking is subtler and trickier.

Fin.

[^0]: ${ }^{\dagger}$ R.A. Fisher, Statistical Methods for Reasearch Workers, 1925.
 \ddagger B.B. Wolman (Ed.), Handbook of Clinical Psychology, 1965. (§5 by J. Cohen)

