2-Factor Randomized Complete Block ANOVA Engineering Statistics II Section 11.1

Josh Engwer

TTU

2018

PART I:

Nuisance Factors

Randomized Blocking

Nuisance Factors (Definition & Types)

Alas, undesirable factors may affect an experiment:

Definition

(Nuisance Factor)

Given a designed experiment.

An uninteresting factor that may affect the response is a **nuisance factor**.

The three types of nuisance factors are dealt with via different techniques[‡]:

NUISANCE FACTOR TYPE:	MITIGATION:	COVERED IN THIS COURSE?	
Unknown &	Randomization &	Randomization: Yes	
Uncontrollable	Double-Blinding	Double-Blinding: No	
Known &	Analysis of Covariance	No	
Uncontrollable	(ANCOVA)	INO	
Known &	Randomized	Yes	
Controllable	Blocking	(Next slides)	

"Block what you can, randomize what you cannot." – G.E.P. Box, 1978 [‡]D.C. Montgomery, *Design & Analysis of Experiments*, 7th Ed, Wiley, 2009. (§4.1) Alas, undesirable factors may affect an experiment[‡]:

NUISANCE FACTOR TYPE:	EXAMPLES:
Unknown & Uncontrollable	Bias of Designer(s) of Exp. Bias of Administrator(s) of Exp. Bias of Human Subject(s) in Exp.
Known & Uncontrollable	Outside Weather (temp, humidity, wind,) Ambient Temp. in Large Warehouse Life Experience of Human Subjects
Known & Controllable	Origin/Purity of Raw Material Batches Ambient Temp. in Small Room Accuracy/Precision of Workers Accuracy/Precision of Machines Time of Day when Exp. is Conducted Manufacturer of Comparable Tools Age Group of Human Subjects

"Block what you can, randomize what you cannot." – G.E.P. Box, 1978 [‡]D.C. Montgomery, *Design & Analysis of Experiments*, 7th Ed, Wiley, 2009. (§4.1) Bias in an experiment is minimized via Randomization & Double-Blinding:

NUISANCE FACTOR TYPE:	EXAMPLES:	
Unknown & Uncontrollable	Bias of Designer(s) of Exp. Bias of Administrator(s) of Exp. Bias of Human Subject(s) in Exp.	

Since randomization of experiments encountered in this course is always assumed, we will not delve into the details of bias.

However, interested readers may consult the following papers:

H. Malone, H. Nicholl, C. Tracey, "Awareness and Minimisation of Systematic Bias in Research", British Journal of Nursing, **23** (2014), 279-282.

D. Sackett, "Bias in Analytic Research", J. Chronic Diseases, 32 (1979), 51-63.

A.-M. Šimundić, "Bias in Research", *Biochemia Medica*, 23 (2013), 12-15.

Randomized Blocking (Motivation)

Randomized blocking^{**} controls for the presence of a nuisance factor.

- 1-Factor Complete Randomization:
 - Collect experimental units (EU's).
 - Randomly assign the EU's to the levels of Factor A.
 - Measure each EU appropriately.
- 2-Factor Complete Randomization:
 - Collect experimental units (EU's).
 - Randomly assign the EU's to the level combinations of Factors A & B.
 - Measure each EU appropriately.
- 2-Factor Randomized Blocking:
 - Collect experimental units (EU's).
 - Identify relevant nuisance factor & call it Block Factor B.
 - Determine the nuisance factor level of each EU.
 - Assign all the EU's with equal nuisance factor level to its own block.
 - Within each block, randomly assign EU's to levels of Factor A.
 - Measure each EU appropriately.

R.A. Fisher, "The Arrangement of Field Experiments", J. Ministry Agr., 33 (1926), 503-513.

R.A. Fisher, *The Design of Experiments*, Oliver & Boyd, 1935. (Ch4)

PART II: 2-FACTOR RANDOMIZED COMPLETE BLOCK ANOVA (2F rcbANOVA)

2-Factor Randomized Complete Block Design Fixed Effects Model Assumptions Fixed Effects Linear Model Sums of Squares Partitioning F-Test Procedure Expected Mean Squares Point Estimators of σ^2 Effect Size Measures

Post-Hoc Comparisons

2-Factor Randomized Complete Block Design

An example randomized complete block design entails the following:

- Collect 6 relevant EU's: EU_1 , EU_2 , EU_3 , EU_4 , EU_5 , EU_6
- Determine EUs' nuisance levels (which is in parentheses): $EU_{1(3)}, EU_{2(1)}, EU_{3(1)}, EU_{4(2)}, EU_{5(3)}, EU_{6(2)}$
- Produce a random shuffle sequence for each nuisance level: Lvl 1: (3; 2), Lvl 2: (4; 6), Lvl 3: (5; 1)
- Use random shuffle sequence to assign the EU's into the 6 groups:

BLOCK B: \rightarrow FACTOR A: \downarrow	Level 1	Level 2	Level 3
Level 1	EU ₃₍₁₎	EU ₄₍₂₎	EU ₅₍₃₎
Level 2	EU ₂₍₁₎	EU ₆₍₂₎	EU ₁₍₃₎

• Measure each EU appropriately (note the change in notation):

BLOCK B: \rightarrow	Level 1	Level 2	Level 3
FACTOR A: \downarrow	$(x_{\bullet 1})$	$(x_{\bullet 2})$	$(x_{\bullet 3})$
Level 1 $(x_{1\bullet})$	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃
Level 2 $(x_{2\bullet})$	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃

2F rcbANOVA Fixed Effects Model Assumptions

Proposition

- (<u>1</u> <u>Desired Factor</u>) The sole factor of interest has I levels.
- (<u>1</u> Nuisance Factor) The sole nuisance factor has J levels.
- (<u>All Factor Levels are Considered</u>) AKA Fixed Effects.
- (<u>1</u> <u>Measurement per Group</u>) Each of the IJ groups has one exp unit.
- (<u>Random Assignment within B</u>locks)

such that (s.t.)

- (*Nuisance Same in Block*) Within block, nearly same nuisance values.
- (*Nuisance Differs across Blocks*) Blocks differ by nuisance value.
- (Independence) All measurements on units are independent.
- (*Normality*) All IJ groups are approximately normally distributed.
- (*Equal Variances*) All IJ groups have approximately same variance.
- (<u>Factor and Block are not Interactive</u>)

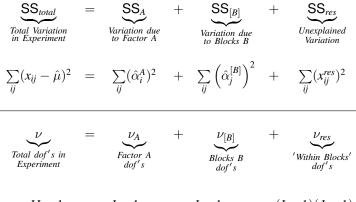
1DF 1NF AFLaC 1MpG | RAwB s.t. NSiB NDaB | I.N.EV FaBanI

2F rcbANOVA Fixed Effects Linear Model			
$(I,J) \equiv$	(# levels of factor A, # levels of blocked nuisance factor B)		
$X_{ij} \equiv$	(-, , ,)		
	Mean avg response over all levels of (factor A, block B)		
$(\alpha_i^A, \alpha_i^{[B]}) \equiv$	(Effect of i^{th} -level factor A, Effect of j^{th} -level block B)		
	Deviation from μ due to random error		
	ASSUMPTIONS: $E_{ij} \stackrel{iid}{\sim} \text{Normal}(0, \sigma^2)$		
$X_{ij} = \mu + \alpha_i^A + \alpha_j^{[B]} + E_{ij} \text{where} \sum_i \alpha_i^A = \sum_j \alpha_j^{[B]} = 0$			
$egin{array}{rll} H^A_0: & {\sf All} & lpha^A_i=0 \ H^A_A: & {\sf Some} & lpha^A_i eq 0 \end{array}$			

 X_{ij} $\overset{IND}{\sim}$... \equiv rv's X_{ij} are <u>independently</u> distributed as ...

 $E_{ij} \sim \dots \equiv \text{rv's } E_{ij}$ are independently and identically distributed as ...

Sums of Squares as a "Partitioning" of Variation Explanation for 2F rcbANOVA



 $\nu = IJ - 1, \quad \nu_A = I - 1, \quad \nu_{[B]} = J - 1, \quad \nu_{res} = (I - 1)(J - 1)$

Remember, randomization occurs only within blocks[‡].

[‡]D.C. Montgomery, *Design & Analysis of Experiments*, 7th Ed, Wiley, 2009. (§4.1)

Josh Engwer (TTU)

•
$$\nu_A = I - 1, \ \nu_{[B]} = J - 1, \ \nu_{res} = (I - 1)(J - 1)$$

2
$$\overline{x}_{i\bullet} := \frac{1}{J} \sum_{j} x_{ij}, \quad \overline{x}_{\bullet j} := \frac{1}{I} \sum_{i} x_{ij}$$

3 $\overline{x}_{\bullet \bullet} := \frac{1}{IJ} \sum_{i} \sum_{j} x_{ij}$

(Optional) SS_{total} := $\sum_{ij} (x_{ij} - \hat{\mu})^2 = \sum_i \sum_j (x_{ij} - \overline{x}_{\bullet \bullet})^2$

2F rcbANOVA F-Test

$$S MS_{A} = \frac{SS_{A}}{\nu_{A}}, MS_{[B]} = \frac{SS_{[B]}}{\nu_{[B]}}, MS_{res} = \frac{SS_{res}}{\nu_{res}}$$

$$f_{A} = \frac{MS_{A}}{MS_{res}}, f_{[B]} = \frac{MS_{[B]}}{MS_{res}}$$

$$\begin{cases} p_{A} := \mathbb{P}(F > f_{A}) \approx 1 - \Phi_{F}(f_{A}; \nu_{A}, \nu_{res}) \\ p_{[B]} := \mathbb{P}(F > f_{[B]}) \approx 1 - \Phi_{F}(f_{[B]}; \nu_{[B]}, \nu_{res}) \end{cases}$$

• • $p_A \leq \alpha$ then reject H_0 , else accept H_0 . • If $p_{[B]} \leq \alpha$ then the blocking reduced MS_{res} vs. 1F ANOVA.

2-Factor rcbANOVA Table (Significance Level α)						
Variation Source	df	Sum of Squares	Mean Square	F Stat Value	P-value	Decision
Factor A	ν_A	SSA	MS _A	f_A	p_A	Acc/Rej H_0^A
Blocks B	$\nu_{[B]}$	$SS_{[B]}$	$MS_{[B]}$	$f_{[B]}$	$p_{[B]}$	*
Error	ν_{res}	SSres	MSres			
Total	ν	SS _{total}				

*Computing $SS_{[B]}, MS_{[B]}, f_{[B]}, p_{[B]}$ is optional but recommended as $p_{[B]} \le \alpha$ implies that the blocking choice results in a significantly smaller MS_{res} than using 1F bcrANOVA, thus the blocked nuisance factor has a significant effect.

On the other hand, if $p_{[B]} > \alpha$, then the particular blocking is not beneficial. The remedy is to block on a (hopefully) more relevant nuisance factor.

2F rcbANOVA (Expected Mean Squares)

Proposition

Given 2-factor experiment satisfying the 2F rcbANOVA assumptions. Then:

$$\mathbb{E}[MS_{res}] = \sigma^2$$

$$\mathbb{E}[MS_A] = \sigma^2 + \frac{J}{I-1} \sum_i (\alpha_i^A)^2$$

$$\mathbb{E}[MS_{[B]}] = \sigma^2 + \frac{I}{J-1} \sum_{j} \left(\alpha_j^{[B]}\right)^2$$

PROOF: Omitted as it's similar (and simpler) to 2F bcrANOVA.

Proposition

(Point Estimation of Mean Squares)

Given a 2F balanced exp. satisfying the 2F rcbANOVA assumptions. Then:

(i) Regardless of the truthness of
$$H_0^A, H_0^{[B]} \implies \mathbb{E}[MS_{res}] = \sigma^2$$

(*ii*) H_0^A is true $\implies \mathbb{E}[MS_A] = \sigma^2$, H_0^A is false $\implies \mathbb{E}[MS_A] > \sigma^2$

PROOF: Omitted as it's similar (and simpler) to 2F bcrANOVA.

YEAR	NAME MEASURE		
1925 [†]	Fisher (Eta-Squared)	$ \hat{\eta}_{A}^{2} := \frac{SS_{A}}{SS_{total}} = \frac{\nu_{A}f_{A}}{\nu_{A}f_{A} + \nu_{[B]}f_{[B]} + \nu_{res}} $ $ \hat{\eta}_{[B]}^{2} := \frac{SS_{[B]}}{SS_{total}} = \frac{\nu_{[B]}f_{[B]}}{\nu_{A}f_{A} + \nu_{[B]}f_{[B]} + \nu_{res}} $ $ \hat{\eta}_{res}^{2} := \frac{SS_{res}}{SS_{total}} $	
1965‡	$\begin{array}{l} Cohen^{[GW],[LH]} \\ (Partial\; \eta^2) \end{array}$	$\hat{\eta}_{(A)}^2 := \frac{SS_A}{SS_A + SS_{res}} = \frac{\nu_{Af_A}}{\nu_{Af_A} + \nu_{res}}$ $\hat{\eta}_{([B])}^2 := \frac{SS_{[B]}}{SS_{[B]} + SS_{res}} = \frac{\nu_{[B]}f_{[B]}}{\nu_{[B]}f_{[B]} + \nu_{res}}$	
$\hat{\eta}_A^2 + \hat{\eta}_{[B]}^2 + \hat{\eta}_{res}^2 = 1 but \hat{\eta}_{(A)}^2 + \hat{\eta}_{([B])}^2 > 1$			

[†]R.A. Fisher, *Statistical Methods for Reasearch Workers*, 1925.

[‡]B.B. Wolman (Ed.), *Handbook of Clinical Psychology*, 1965. (§5 by J. Cohen)

EFFECT SIZE VALUE:	INTERPRETATION:	
$\hat{\eta}_A^2 := rac{ extsf{SS}_A}{ extsf{SS}_A + extsf{SS}_{[B]} + extsf{SS}_{res}} = 0.38$	38% of the variation in the reponse is due to Factor A	
$\hat{\eta}^2_{[B]} \coloneqq rac{SS_{\scriptscriptstyle{[B]}}}{SS_{\scriptscriptstyle{A}}+SS_{\scriptscriptstyle{[B]}}+SS_{\scriptscriptstyle{res}}} = 0.02$	2% of the variation in the reponse is due to Block B	
$\hat{\eta}_{\textit{res}}^2 := rac{SS_{\textit{res}}}{SS_{\textit{A}} + SS_{\textit{[B]}} + SS_{\textit{res}}} = 0.60$	60% of the variation in the reponse is unexplained with experiment	
$\hat{\eta}^2_{(A)} := rac{ extsf{SS}_A}{ extsf{SS}_A + extsf{SS}_{res}} = 0.43$	43% of the variation possibly due to Factor A is actually due to Factor A	
$\hat{\eta}^2_{([B])} := rac{{\tt SS}_{{}^{[B]}}}{{\tt SS}_{{}^{[B]}} + {\tt SS}_{{}^{res}}} = 0.72$	72% of the variation possibly due to Block B is actually due to Block B	

YEAR	NAME	MEASURE	
1963†	Hays	$\hat{\omega}_A^2 := rac{\mathrm{SS}_A - u_A \mathrm{MS}_{res}}{\mathrm{SS}_{total} + \mathrm{MS}_{res}} = rac{ u_A f_A - u_A}{ u_A f_A + u_{[B]} f_{[B]} + n}$	
1905	(Omega-Squared)	$\hat{\omega}_{[B]}^2 := \frac{SS_{[B]} - \nu_{[B]}MS_{res}}{SS_{total} + MS_{res}} = \frac{\nu_{[B]f_{[B]}} - \nu_{[B]}}{\nu_{Af_A} + \nu_{[B]f_{[B]}} + n}$	
1979 [‡]	Keren-Lewis	$\hat{\omega}_{(A)}^2 := \frac{SS_A - \nu_A MS_{res}}{SS_A + (n - \nu_A) MS_{res}} = \frac{\nu_A (f_A - 1)}{\nu_A (f_A - 1) + n}$	
1979	(Partial ω^2)	$\hat{\omega}_{([B])}^2 := \frac{SS_{[B]} - \nu_{[B]}MS_{res}}{SS_{[B]} + (n - \nu_{[B]})MS_{res}} = \frac{\nu_{[B]}(f_{[B]} - 1)}{\nu_{[B]}(f_{[B]} - 1) + n}$	
H = (1 + i)(1 + i)			

 $n := IJ = (1 + \nu_A)(1 + \nu_{[B]})$

[†]W.L. Hays, *Statistics for Psychologists*, 1963.

[‡]G. Keren, C. Lewis, "Partial Omega Squared for ANOVA Designs", *Educational & Psychological Measurement*, **39** (1979), 119-128.

2F rcbANOVA Tukey Post-Hoc Comparisons

Suppose a 2-Factor rcbANOVA results in the rejection of H_0^A . Then, at least two of the pop. means significantly differ, but which ones?

Proposition

Given a 2-factor experiment with I levels of factor A and J levels of blocked nuisance factor B where 2F rcbANOVA rejects H_0^A at significance level α . Then, to find which levels of factor A significantly differ:

• Compute the factor A significant difference width: $[\nu_{res} := (I-1)(J-1)]$

$$w_A = q^*_{I,\nu_{res};\alpha} \cdot \sqrt{MS_{res}/J}$$

Sort the I factor A level means in ascending order:

$$\overline{x}_{(1)\bullet} \leq \overline{x}_{(2)\bullet} \leq \cdots \leq \overline{x}_{(I)\bullet}$$

Solution For each sorted group mean $\overline{x}_{(i)\bullet}$:

- If $\bar{x}_{(i+1)\bullet} \notin [\bar{x}_{(i)\bullet}, \bar{x}_{(i)\bullet} + w_A]$, repeat STEP 3 with next sorted mean.
- Else, underline $\bar{x}_{(i)}$ and all larger means within a distance of w_A w/ new line.

NOTE: Tukey Post-Hoc Comp's are used only for factor A, not for block B.

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Sum of Squares of Factor A	SSTr	SS_A
Mean Square of Factor A	MSTr	MS_A
Sum of Squares of Error	SSE	SS _{res}
Mean Square of Error	MSE	MS _{res}
Effect of <i>i</i> th Factor A	α_i	α_i^A
Null Hypothesis for Factor A	H_{0A}	H_0^A
Alt. Hypothesis for Factor A	H_{aA}	H^A_A
Expected Value	E(X)	$\mathbb{E}[X]$
Variance	V(X)	$\mathbb{V}[X]$

- Ignore "Models for Random Effects" section.
 - The ANOVA procedure is identical as for fixed effects linear models.
 - However, model assumption checking is subtler and trickier.

Fin.