
2-Factor Balanced Completely Randomized
ANOVA

Engineering Statistics II
Section 11.2

Josh Engwer

TTU

2018

Josh Engwer (TTU) 2-Factor Balanced Completely Randomized ANOVA 2018 1 / 80



PART I

PART I:

2-FACTOR BALANCED EXPERIMENTS

Why 2F ANOVA and not two 1-Factor ANOVA’s?

2-Factor Balanced Experiments

Main Effects

Interactions

Interaction Plots

Josh Engwer (TTU) 2-Factor Balanced Completely Randomized ANOVA 2018 2 / 80



Why 2F ANOVA and not two 1F ANOVA’s?

Suppose one wishes to analyze a designed experiment involving two factors.

It seems reasonable to conduct two independent 1-Factor ANOVA’s
– one on the 1st factor (factor A), the other on the 2nd factor (factor B).

Unfortunately, this is a poor strategy for the following reasons♣♥:
1 2F ANOVA tests for an interaction effect – two 1F ANOVA’s cannot.

(Definition and details later in this slide deck.)
2 2F ANOVA results in more powerful F-tests than two 1F ANOVA’s.

i.e. 2F ANOVA better explains variability than two 1F ANOVA’s.
3 2F ANOVA is more cost efficient than two 1F ANOVA’s.

2F ANOVA requires half as many measurements as two 1F ANOVA’s.
4 3F ANOVA generalizes easily from 2F ANOVA, not from two 1F ANOVA’s.

♣ R.G. Lomax, D.L. Hahs-Vaughn, Statistical Concepts: A 2nd Course, 4th Ed., 2012.
♥ J.P. Stevens, Intermediate Statistics: A Modern Approach, 3rd Ed., 2007.
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2-Factor Balanced Experiments

Definition
(2-Factor Balanced Experiment)

A 2-factor experiment with equal group sizes of K > 1 is called balanced.

A I × J 2F experiment means Factor A has I levels & Factor B has J levels.

SYNONYMS: Balanced/Orthogonal data/design/model

FACTOR B: →
FACTOR A: ↓

Level 1
(x•1)

Level 2
(x•2)

Level 1 (x1•) x111, x112 x121, x122

Level 2 (x2•) x211, x212 x221, x222

Level 3 (x3•) x311, x312 x321, x322

Prototype 3× 2 balanced experiment with K = 2

xijk ≡ kth measurement at (i, j)-levels of factors (A,B)
xij• ≡ group mean at (i, j)-levels of factors (A,B)
xi•• ≡ mean of measurements at ith level of factor A
x•j• ≡ mean of measurements at jth level of factor B
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2-Factor Balanced Experiments

Definition
(2-Factor Balanced Experiment)

A 2-factor experiment with equal group sizes of K > 1 is called balanced.

A I × J experiment means Factor A has I levels & Factor B has J levels.

SYNONYMS: Balanced/Orthogonal data/design/model

FACTOR B: →
FACTOR A: ↓

Level 1
(x•1)

Level 2
(x•2)

Level 1 (x1•) x111, x112 x121, x122

Level 2 (x2•) x211, x212 x221, x222

Level 3 (x3•) x311, x312 x321, x322

Prototype 3× 2 balanced experiment with K = 2

x11• = (x111 + x112)/2
x1•• = (x111 + x112 + x121 + x122)/4
x•1• = (x111 + x112 + x211 + x212 + x311 + x312)/6
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2-Factor Balanced Experiments

Definition
(2-Factor Balanced Experiment)

A 2-factor experiment with equal group sizes of K > 1 is called balanced.

A I × J 2F experiment means Factor A has I levels & Factor B has J levels.

SYNONYMS: Balanced/Orthogonal data/design/model

FACTOR B: →
FACTOR A: ↓

Level 1
(x•1)

Level 2
(x•2)

Level 1 (x1•) x111, x112 x121, x122

Level 2 (x2•) x211, x212 x221, x222

Level 3 (x3•) x311, x312 x321, x322

Prototype 3× 2 balanced experiment with K = 2

x32• = (x321 + x322)/2
x3•• = (x311 + x312 + x321 + x322)/4
x•2• = (x121 + x122 + x221 + x222 + x321 + x322)/6
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Main & Interaction Effects in 2F bcrANOVA

Definition
(Main Effect in 2F bcrANOVA)

Given a 2-Factor balanced completely randomized experiment.

A main effect of one factor is present if its effect at a fixed level is the same
for all levels of the other factor.

Definition
(Interaction Effect♥ in 2F bcrANOVA)

Given a 2-Factor balanced completely randomized experiment.

An interaction (effect) is present if one factor’s effect at a fixed level is not the
same for all levels of the other factor.

i.e. An interaction means the combined levels of the two factors results in an
effect in addition to any main effects of each factor alone.

i.e. A lack of interaction means the two factors’ effects are independent.

♥ J.P. Stevens, Intermediate Statistics: A Modern Approach, 3rd Ed., 2007.
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2x2 Interaction Plot (Given: A=no, B=no, AB=no)

(left plot) A lines nearly parallel =⇒ AB interaction’s absent
(right plot) B lines nearly parallel =⇒ AB interaction’s absent
(left plot) A lines nearly horizontal =⇒ A main effect’s absent
(left plot) A lines nearly coincident =⇒ B main effect’s absent

(right plot) B lines nearly horizontal =⇒ B main effect’s absent
(right plot) B lines nearly coincident =⇒ A main effect’s absent
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2x2 Interaction Plot (Given: A=yes, B=no, AB=no)

(left plot) A lines nearly parallel =⇒ AB interaction’s absent
(right plot) B lines nearly parallel =⇒ AB interaction’s absent
(left plot) A lines largely slanted =⇒ A main effect’s present
(left plot) A lines nearly coincident =⇒ B main effect’s absent

(right plot) B lines nearly horizontal =⇒ B main effect’s absent
(right plot) B lines largely separate =⇒ A main effect’s present
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2x2 Interaction Plot (Given: A=no, B=yes, AB=no)

(left plot) A lines nearly parallel =⇒ AB interaction’s absent
(right plot) B lines nearly parallel =⇒ AB interaction’s absent
(left plot) A lines nearly horizontal =⇒ A main effect’s absent
(left plot) A lines largely separate =⇒ B main effect’s present

(right plot) B lines largely slanted =⇒ B main effect’s present
(right plot) B lines nearly coincident =⇒ A main effect’s absent
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2x2 Interaction Plot (Given: A=yes, B=yes, AB=no)

(left plot) A lines nearly parallel =⇒ AB interaction’s absent
(right plot) B lines nearly parallel =⇒ AB interaction’s absent
(left plot) A lines largely slanted =⇒ A main effect’s present
(left plot) A lines largely separate =⇒ B main effect’s present

(right plot) B lines largely slanted =⇒ B main effect’s present
(right plot) B lines largely separate =⇒ A main effect’s present
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2x2 Interaction Plot (Given: A=no, B=no, AB=yes)

(left plot) A lines largely non-parallel =⇒ AB interaction’s present
(right plot) B lines largely non-parallel =⇒ AB interaction’s present
(left plot) ??????? A main effect’s absent??
(left plot) ??????? B main effect’s absent??

(right plot) ??????? B main effect’s absent??
(right plot) ??????? A main effect’s absent??

Josh Engwer (TTU) 2-Factor Balanced Completely Randomized ANOVA 2018 12 / 80



2x2 Interaction Plot (Given: A=yes, B=no, AB=yes)

(left plot) A lines largely non-parallel =⇒ AB interaction’s present
(right plot) B lines largely non-parallel =⇒ AB interaction’s present
(left plot) ??????? A main effect’s present??
(left plot) ??????? B main effect’s absent??

(right plot) ??????? B main effect’s absent??
(right plot) ??????? A main effect’s present??

Josh Engwer (TTU) 2-Factor Balanced Completely Randomized ANOVA 2018 13 / 80



2x2 Interaction Plot (Given: A=no, B=yes, AB=yes)

(left plot) A lines largely non-parallel =⇒ AB interaction’s present
(right plot) B lines largely non-parallel =⇒ AB interaction’s present
(left plot) ??????? A main effect’s absent??
(left plot) ??????? B main effect’s present??

(right plot) ??????? B main effect’s present??
(right plot) ??????? A main effect’s absent??

Josh Engwer (TTU) 2-Factor Balanced Completely Randomized ANOVA 2018 14 / 80



2x2 Interaction Plot (Given: A=yes, B=yes, AB=yes)

(left plot) A lines largely non-parallel =⇒ AB interaction’s present
(right plot) B lines largely non-parallel =⇒ AB interaction’s present
(left plot) ??????? A main effect’s present??
(left plot) ??????? B main effect’s present??

(right plot) ??????? B main effect’s present??
(right plot) ??????? A main effect’s present??

Josh Engwer (TTU) 2-Factor Balanced Completely Randomized ANOVA 2018 15 / 80



4x3 Interaction Plot (Given: A=no, B=no, AB=no)

(left plot) A lines nearly parallel =⇒ AB interaction’s absent
(right plot) B lines nearly parallel =⇒ AB interaction’s absent
(left plot) A lines nearly horizontal =⇒ A main effect’s absent
(left plot) A lines nearly coincident =⇒ B main effect’s absent

(right plot) B lines nearly horizontal =⇒ B main effect’s absent
(right plot) B lines nearly coincident =⇒ A main effect’s absent
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4x3 Interaction Plot (Given: A=yes, B=yes, AB=yes)

(left plot) A lines largely non-parallel =⇒ AB interaction’s present
(right plot) B lines largely non-parallel =⇒ AB interaction’s present
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Moral of the Story regarding Interaction Plots

1 Use interaction plots to infer the presence of a significant interaction.
Widen plot’s vertical axis limits by four times the estimated std deviation.
Otherwise, an interaction may appear when the vertical axis scale is small.

2 If there’s no significant interaction present:
The presence of main effects can be inferred.

3 If there is a significant interaction present:
It’s too hard to infer presence of main effects visually.
However, the actual 2F ANOVA may infer presence of main effects...

...but proper interpretation of any main effects given an interaction is hard.

Moreover, 2F ANOVA can infer the presence of an interaction.

All this said, interaction plots are mainly used to determine the presence of a
significant interaction before performing an ANOVA when the corresponding
assumptions call for the presence or lack of said interaction.
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PART II

PART II:

2-Factor Linear (Statistical) Models:

Definitions, Examples

Least Squares Estimators (LSE’s)

Best Linear Unbiased Estimators (BLUE’s)

Gauss-Markov Theorem
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2-Factor Linear (Statistical) Models (Definition)
With many-sample inference, it’s convenient to use a linear model:

Definition
(2-Factor Linear Model)

Given a 2-factor balanced experiment with IJ groups, each of size K > 1.
In particular, factor A has I levels and factor B has J levels.

Let Xijk ≡ rv for kth measurement at (i, j)-level of factors A & B.

Then, the linear (statistical) model for the experiment is defined as:

Xijk = µ+ αA
i + αB

j + γAB
ij + Eijk where Eijk

iid∼ Normal(0, σ2)

where:

µ ≡ Population grand mean of all IJ population means
(αA

i , α
B
j ) ≡ Effect of (ith-level factor A, jth-level factor B)

γAB
ij ≡ Interaction between (i, j)-level factors A & B

Eijk ≡ Deviation of Xijk from µ due to random error
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2-Factor Linear Models (Least-Squares Estimators)

Proposition
Given a 2-factor linear model:

Xijk = µ+ αA
i + αB

j + γAB
ij + Eijk where Eijk

iid∼ Normal(0, σ2)

(a) The least-squares♠♣ estimators (LSE’s) for the model parameters are:

µ̂ = x•••
α̂A

i = xi•• − x•••
α̂B

j = x•j• − x•••
γ̂AB

ij = xij• − xi•• − x•j• + x•••

,

x••• ≡ Grand sample mean
xi•• ≡ Mean of groups at ith-lvl A
x•j• ≡ Mean of groups at jth-lvl B
xij• ≡ Mean of (i, j)-lvl group

(b) For these LSE’s, it’s required that
∑

i α
A
i =

∑
j α

B
j =

∑
i γ

AB
ij =

∑
j γ

AB
ij = 0.

(c) These least-squares estimators are all unbiased.

PROOF: The general case is left as an ungraded exercise for the reader.
♠A.M. Legendre, Nouvelles Méthodes pour la Détermination des Orbites des Comètes, 1806.
♣Gauss, Theoria Motus Corporum Coelestrium in Sectionibus Conicis Solem Ambientium, 1809.
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2-Factor Linear Models (Predicted Responses)

Definition
(Predicted Responses)

Given a 2-factor linear model:

Xijk = µ+ αA
i + αB

j + γAB
ij + Eijk where Eijk

iid∼ Normal(0, σ2)

Then the corresponding predicted responses, denoted x̂ijk, are:

x̂ijk := µ̂+ α̂A
i + α̂B

j + γ̂AB
ij = xij•

SYNONYMS: Predicted values, fitted values
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2-Factor Linear Models (Residuals)

Definition
(Residuals)

Given a 2-factor linear model:

Xijk = µ+ αA
i + αB

j + γAB
ij + Eijk where Eijk

iid∼ Normal(0, σ2)

Then the corresponding predicted responses, denoted x̂ijk, are:

x̂ijk := µ̂+ α̂A
i + α̂B

j + γ̂AB
ij = xij•

Moreover, the corresponding residuals, denoted xres
ijk , are:

xres
ijk := xijk − x̂ijk = xijk − xij•
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Linear Models (Best Linear Unbiased Estimators)

Point estimators for a linear model should be ideal ones:

Definition
(Best Linear Unbiased Estimators – BLUE’s)

A point estimator θ̂ is called a best linear unbiased estimator (BLUE) if:

It estimates a parameter θ of a linear model.
It is a linear combination of the data points: θ̂ :=

∑n
k=1 ckxk

It is an unbiased estimator: E[θ̂] = θ

It has minimum variance of all such unbiased estimators.

REMARK: BLUE’s are generally easier to construct & prove than UMVUE’s.

For a 2-factor linear model: Xijk = µ+ αA
i + αB

j + γAB
ij + Eijk

µ̂, α̂A
i , α̂

B
j , γ̂

AB
ij are each linear combinations of data points in the linear model.
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2-Factor Linear Models (Gauss-Markov Theorem)

Theorem
(Gauss†-Markov‡ Theorem)

Given a 2-factor linear model: Xijk = µ+ αA
i + αB

j + γAB
ij + Eijk

Moreover, suppose the following conditions are all satisfied:

E[Eijk] = 0 (errors are all centered at zero)
V[Eijk] = σ2 (errors all have the same finite variance)

C[Eijk,Ei′j′k′ ] = 0 (errors are uncorrelated when i 6= i′ or j 6= j′ or k 6= k′)

Then, the least-squares estimators (LSE’s) µ̂, α̂A
i , α̂

B
j , γ̂

AB
ij are all BLUE’s.

PROOF: Omitted due to time.
†C.F. Gauss, “Theoria Combinationis Observationum Erroribus Minimis Obnoxiae”, (1823), 1-58.

‡A.A. Markov, Calculus of Probabilities, 1st Edition, 1900.
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PART III

PART III:

2-FACTOR BALANCED COMPLETELY RANDOMIZED ANOVA
(2F bcrANOVA)

Motivation

Visual Dotplots
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2F bcrANOVA (Motivation & Explanation)

xA1 := x11+x12
2 , xA2 := x21+x22

2 , xB1 := x11+x21
2 , xB2 := x12+x22

2
xAB1 := x11+x22

2 , xAB2 := x12+x21
2

s2
A := Variance of the sample consisting of values xA1 & xA2

s2
B := Variance of the sample consisting of values xB1 & xB2

s2
AB := Variance of the sample consisting of values xAB1 & xAB2

s2
A/s2

within � 1 =⇒ Factor A clearly has no significant main effect!
s2

B/s2
within � 1 =⇒ Factor B clearly has no significant main effect!

s2
AB/s2

within � 1 =⇒ Factors A & B clearly have no interactive effect!
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PART IV

PART IV:

2-FACTOR BALANCED COMPLETELY RANDOMIZED ANOVA
(2F bcrANOVA)

2-Factor Completely Randomized Design

Fixed Effects Model Assumptions

Fixed Effects Linear Model

Sums of Squares Partitioning

F-Test Procedure

Expected Mean Squares

Point Estimators of σ2

Effect Size Measures

Post-Hoc Comparisons
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2-Factor Completely Randomized Design
An example completely randomized design entails the following:

Collect 12 relevant experimental units (EU’s): EU1,EU2, · · · ,EU12

Produce a random shuffle sequence using software:
(6, 10; 3, 1; 5, 8; 11, 9; 7, 2; 12, 4)

Use random shuffle sequence to assign the EU’s into the IJ groups:

FACTOR B: →
FACTOR A: ↓ Level 1 Level 2 Level 3

Level 1 EU6, EU10 EU3, EU1 EU5, EU8

Level 2 EU11, EU9 EU7, EU2 EU12,EU4

Measure each EU appropriately (note the change in notation):

FACTOR B: →
FACTOR A: ↓

Level 1
(x•1)

Level 2
(x•2)

Level 3
(x•3)

Level 1 (x1•) x111, x112 x121, x122 x131, x132

Level 2 (x2•) x211, x212 x221, x222 x231, x232

EUk ≡
(
kth experimental unit collected

)
xijk ≡

(
Measurement of kth EU in (i, j)-levels of factors A & B

)
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2F bcrANOVA Fixed Effects Model Assumptions

Proposition
(2F bcrANOVA Fixed Effects Model Assumptions)

(2 Desired Factors) Factor A has I levels & Factor B has J levels.
(All Factor Levels are Considered) AKA Fixed Effects.
(Factors are Crossed) IJ groups – one per (i, j)-level factor combination.
(Balanced Replication in Groups) Each group has K > 1 units.
(Distinct Exp. Units ) All IJK units are distinct from each other.

(Random Assignment across Groups)

(Independence) All measurements on units are independent.
(Normality) All groups are approximately normally distributed.
(Equal Variances) All groups have approximately same variance.

Mnemonic: 2DF AFLaC FaC BRiG DEU | RAaG | I.N.EV
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2F bcrANOVA Linear Model (Fixed Effects)

2F bcrANOVA Fixed Effects Linear Model
(I, J) ≡ (# levels of factor A, # levels of factor B)

K ≡ # observations (replications) at each (i, j)-level of factors A & B
Xijk ≡ rv for kth observation at (i, j)-level of factors A & B
µ ≡ Mean average response over all levels of factors A & B

(αA
i , α

B
j ) ≡ (Effect of ith-level factor A, Effect of jth-level factor B)

γAB
ij ≡ Interaction between (i, j)-level factors A & B

Eijk ≡ Deviation from µ due to random error
ASSUMPTIONS: Eijk

iid∼ Normal
(
0, σ2

)
Xijk = µ+ αA

i + αB
j + γAB

ij + Eijk where
{ ∑

i α
A
i =

∑
j α

B
j = 0∑

i γ
AB
ij =

∑
j γ

AB
ij = 0

HA
0 : All αA

i = 0
HA

A : Some αA
i 6= 0

HB
0 : All αB

j = 0
HB

A : Some αB
j 6= 0

HAB
0 : All γAB

ij = 0
HAB

A : Some γAB
ij 6= 0

Xijk
IND∼ ... ≡ rv’s Xijk are independently distributed as ...

Eijk
iid∼ ... ≡ rv’s Eijk are independently and identically distributed as ...
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Sums of Squares as a “Partitioning” of Variation
Explanation for 2F bcrANOVA

SStotal︸ ︷︷ ︸
Total Variation
in Experiment

= SSA︸︷︷︸
Variation due
to Factor A

+ SSB︸︷︷︸
Variation due
to Factor B

+ SSAB︸ ︷︷ ︸
Variation due
to Interaction

+ SSres︸ ︷︷ ︸
Unexplained

Variation

∑
ijk

(xijk − µ̂)2 =
∑
ijk

(α̂A
i )2 +

∑
ijk

(α̂B
j )2 +

∑
ijk

(γ̂AB
ij )2 +

∑
ijk

(xres
ijk )2

ν︸︷︷︸
Total dof ′s in

Experiment

= νA︸︷︷︸
Factor A

dof ′s

+ νB︸︷︷︸
Factor B

dof ′s

+ νAB︸︷︷︸
Interaction

dof ′s

+ νres︸︷︷︸
′Within Groups′

dof ′s

ν = IJK − 1, νA = I − 1, νB = J − 1, νAB = (I − 1)(J − 1), νres = IJ(K − 1)
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2F bcrANOVA F-Test

1 νA = I − 1, νB = J − 1, νAB = (I − 1)(J − 1), νres = IJ(K − 1)

2 xi•• := 1
JK

∑
j

∑
k xijk, x•j• := 1

IK

∑
i

∑
k xijk, xij• := 1

K

∑
k xijk

3 x••• := 1
IJK

∑
i

∑
j

∑
k xijk

4


SSres :=

∑
ijk(xres

ijk )2 =
∑

i

∑
j

∑
k(xijk − xij•)

2

SSA :=
∑

ijk(α̂
A
i )2 =

∑
i

∑
j

∑
k(xi•• − x•••)2

SSB :=
∑

ijk(α̂
B
j )2 =

∑
i

∑
j

∑
k(x•j• − x•••)2

SSAB :=
∑

ijk(γ̂
AB
ij )2 =

∑
i

∑
j

∑
k(xij• − xi•• − x•j• + x•••)2

(Optional) SStotal :=
∑

ijk(xijk − µ̂)2 =
∑

i

∑
j

∑
k(xijk − x•••)2
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2F bcrANOVA F-Test

5 MSA =
SSA

νA
, MSB =

SSB

νB
, MSAB =

SSAB

νAB
, MSres =

SSres

νres

6 fA =
MSA

MSres
, fB =

MSB

MSres
, fAB =

MSAB

MSres

7 (if using software):

 pA := P(F > fA) ≈ 1− ΦF(fA; νA, νres)
pB := P(F > fB) ≈ 1− ΦF(fB; νB, νres)
pAB := P(F > fAB) ≈ 1− ΦF(fAB; νAB, νres)

8 
If pA ≤ α or fA > f ∗νA,νres;α then reject HA

0 else accept HA
0

If pB ≤ α or fB > f ∗νB,νres;α then reject HB
0 else accept HB

0
If pAB ≤ α or fAB > f ∗νAB,νres;α then reject HAB

0 else accept HAB
0
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2F bcrANOVA Table

2F bcrANOVA Table (Significance Level α)

Variation
Source df Sum of

Squares
Mean

Square
F Stat
Value P-value Decision

A νA SSA MSA fA pA Acc/Rej HA
0

B νB SSB MSB fB pB Acc/Rej HB
0

AB νAB SSAB MSAB fAB pAB Acc/Rej HAB
0

Unknown νres SSres MSres

Total ν SStotal
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2F bcrANOVA (Expected Mean Squares)

Proposition
Given 2-factor experiment satisfying the 2F bcrANOVA assumptions. Then:

(i) E[MSres] = σ2

(ii) E[MSA] = σ2 +
JK

I − 1

∑
i

(αA
i )2

(iii) E[MSB] = σ2 +
IK

J − 1

∑
j

(αB
j )2

(iv) E[MSAB] = σ2 +
K

(I − 1)(J − 1)

∑
i

∑
j

(γAB
ij )2
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2F bcrANOVA Expected Mean Squares: Proof of (i)

E[SSres] := E
[∑

ijk(Xres
ijk )2

]
= E

[∑
ijk(Xijk − X̂ijk)

2
]

= E
[∑

ijk

(
Xijk − (µ̂+ α̂A

i + α̂B
j + γ̂AB

ij )
)2
]

BLUE
= E

[∑
ijk(Xijk − Xij•)

2
]

CIO
= K−1

K−1 · E
[∑

i

∑
j

∑
k(Xijk − Xij•)

2
]

= (K − 1) ·
∑

i

∑
j E
[

1
K−1

∑
k(Xijk − Xij•)

2
]

= (K − 1) ·
∑

i

∑
j E
[
S2

ij

]
= (K − 1) ·

∑
i

∑
j σ

2

= IJ(K − 1)σ2

=⇒ E [MSres] := E
[

SSres
νres

]
= E[SSres]

IJ(K−1) = IJ(K−1)σ2

IJ(K−1) = σ2

CIO ≡ “Clever Insertion of One” S2
ij ≡ Variance of (i, j)-level group
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2F bcrANOVA Expected Mean Squares: Proof of (ii)

Given Xijk = µ+ αA
i + αB

j + γAB
ij + Eijk s.t. Eijk

IND∼ Normal(0, σ2)

=⇒ Xi•• = µ+ αA
i + Ei••

CLT
=⇒ Ei••

IND∼ Normal(0, σ
2

JK )

=⇒ X••• = µ+ E•••
CLT
=⇒ E••• ∼ Normal(0, σ

2

IJK )

E[SSA] := E
[∑

ijk(α̂
A
i )2
]

BLUE
=
∑

ijk E
[
(Xi•• − X•••)2

]
=

∑
ijk E

[
(αA

i + Ei•• − E•••)2
]

(1)
= JK ·

∑
i E
[
(αA

i )2
]

+ JK ·
∑

i E
[
(Ei••)

2 − 2(Ei••E•••) + (E•••)2
]

(2)
= JK ·

∑
i(α

A
i )2 + JK ·

∑
i E
[
(Ei••)

2
]

+ E
[
−IJK(E•••)2

]
(3)
= JK ·

∑
i(α

A
i )2 + JK ·

∑
i

[
(0)

2
+ σ2

JK

]
− IJK · E

[
(E•••)2

]
(3)
= JK ·

∑
i(α

A
i )2 + Iσ2 − IJK ·

(
(0)

2
+ σ2

IJK

)
= JK ·

∑
i(α

A
i )2 + (I − 1)σ2

∴ E[MSA] := E
[

SSA
νA

]
= E[SSA]

I−1 = σ2 + JK
I−1 ·

∑
i(α

A
i )2

(1)
∑

i(Ei•• − E•••) = 0, (2)
∑

i Ei•• = I · E•••, (3) V [X] = E
[
X2
]
− (E [X])

2
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2F bcrANOVA Expected Mean Squares: Proof of (iii)

Given Xijk = µ+ αA
i + αB

j + γAB
ij + Eijk s.t. Eijk

IND∼ Normal(0, σ2)

=⇒ X•j• = µ+ αB
j + E•j•

CLT
=⇒ E•j•

IND∼ Normal(0, σ
2

IK )

=⇒ X••• = µ+ E•••
CLT
=⇒ E••• ∼ Normal(0, σ

2

IJK )

E[SSB] := E
[∑

ijk(α̂
B
j )2
]

BLUE
=
∑

ijk E
[
(X•j• − X•••)2

]
=

∑
ijk E

[
(αB

j + E•j• − E•••)2
]

(1)
= IK ·

∑
j E
[
(αB

j )2
]

+ IK ·
∑

j E
[
(E•j•)2 − 2(E•j•E•••) + (E•••)2

]
(2)
= IK ·

∑
j(α

B
j )2 + IK ·

∑
j E
[
(E•j•)2

]
+ E

[
−IJK(E•••)2

]
(3)
= IK ·

∑
j(α

B
j )2 + IK ·

∑
j

[
(0)

2
+ σ2

IK

]
− IJK · E

[
(E•••)2

]
(3)
= IK ·

∑
j(α

B
j )2 + Jσ2 − IJK ·

(
(0)

2
+ σ2

IJK

)
= IK ·

∑
j(α

B
j )2 + (J − 1)σ2

∴ E[MSB] := E
[

SSB
νB

]
= E[SSB]

J−1 = σ2 + IK
J−1 ·

∑
j(α

B
j )2

(1)
∑

j(E•j• − E•••) = 0, (2)
∑

j E•j• = J · E•••, (3) V [X] = E
[
X2
]
− (E [X])

2
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2F bcrANOVA Expected Mean Squares: Proof of (iv)
Given Xijk = µ+ αA

i + αB
j + γAB

ij + Eijk s.t. Eijk
IND∼ Normal(0, σ2)

=⇒ Xij• = µ+ αA
i + αB

j + γAB
ij + Eij•

CLT
=⇒ Eij•

IND∼ Normal(0, σ
2

K )

=⇒ X••• = µ+ E•••
CLT
=⇒ E••• ∼ Normal(0, σ

2

IJK )

E[SSAB] := E
[∑

ijk(γ̂
AB
ij )2

]
BLUE
=
∑

ijk E
[
(Xij• − Xi•• − X•j• + X•••)2

]
=

∑
ijk E

[
(γAB

ij + Eij• − Ei•• − E•j• + E•••)2
]

(∗)
= K ·

∑
ij(γ

AB
ij )2 + K ·

∑
ij E
[
(Eij• − Ei•• − E•j• + E•••)2

]
(♣)
= K ·

∑
ij(γ

AB
ij )2 + K ·

∑
ij E
[
(Eij•)

2 + (Ei••)
2 + (E•j•)2 + (E•••)2

]
+ K ·

∑
ij E
[
−2(Eij•)(Ei••)− 2(Eij•)(E•j•) + 2(Eij•)(E•••)

]
+ K ·

∑
ij E
[
2(Ei••)(E•j•)− 2(Ei••)(E•••)− 2(E•j•)(E•••)

]
(∗)
∑

ij(Eij• − Ei•• − E•j• + E•••) = IJ · E••• − IJ · E••• − IJ · E••• + IJ · E••• = 0

(♣) (w− x− y + z)2 = w2 + x2 + y2 + z2 − 2wx− 2wy + 2wz + 2xy− 2xz− 2yz
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2F bcrANOVA Expected Mean Squares: Proof of (iv)
Given Xijk = µ+ αA

i + αB
j + γAB

ij + Eijk s.t. Eijk
IND∼ Normal(0, σ2)

=⇒ Xij• = µ+ αA
i + αB

j + γAB
ij + Eij•

CLT
=⇒ Eij•

IND∼ Normal(0, σ
2

K )

=⇒ Xi•• = µ+ αA
i + Ei••

CLT
=⇒ Ei••

IND∼ Normal(0, σ
2

JK )

=⇒ X•j• = µ+ αB
j + E•j•

CLT
=⇒ E•j•

IND∼ Normal(0, σ
2

IK )

=⇒ X••• = µ+ E•••
CLT
=⇒ E••• ∼ Normal(0, σ

2

IJK )

E[SSAB] = K ·
∑

ij(γ
AB
ij )2 + K ·

∑
ij E
[
(Eij•)

2 + (Ei••)
2 + (E•j•)2 + (E•••)2

]
+ K ·

∑
ij E
[
−2(Eij•)(Ei••)− 2(Eij•)(E•j•) + 2(Eij•)(E•••)

]
+ K ·

∑
ij E
[
2(Ei••)(E•j•)− 2(Ei••)(E•••)− 2(E•j•)(E•••)

]
(♠)
= K ·

∑
ij(γ

AB
ij )2 + K ·

∑
ij

(
σ2

K + σ2

JK + σ2

IK + σ2

IJK

)
+ K ·

(
−2 · Iσ2

K − 2 · Jσ2

K + 2 · σ
2

K

)
+ K ·

(
2 · σ

2

K − 2 · σ
2

K − 2 · σ
2

K

)
(♠)

∑
ij E
[
(Ei••)(E•j•)

]
= E

[∑
i(Ei••) ·

∑
j(E•j•)

]
= IJ · E

[
(E•••)2

]
= σ2

K∑
ij E
[
(Eij•)(Ei••)

]
= E

[∑
i((Ei••) ·

∑
j(Eij•))

]
= J ·

∑
i E
[
(Ei••)

2
]

= IJ · σ
2

JK = Iσ2

K∑
ij E
[
(Eij•)(E•j•)

]
= E

[∑
j((E•j•) ·

∑
i(Eij•))

]
= I ·

∑
j E
[
(E•j•)2

]
= IJ · σ

2

IK = Jσ2

K
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2F bcrANOVA Expected Mean Squares: Proof of (iv)

E[SSAB] = K ·
∑

ij(γ
AB
ij )2 + K ·

∑
ij

(
σ2

K + σ2

JK + σ2

IK + σ2

IJK

)
+ K ·

(
−2 · Iσ2

K − 2 · Jσ2

K + 2 · σ
2

K

)
+ K ·

(
2 · σ

2

K − 2 · σ
2

K − 2 · σ
2

K

)

= K ·
∑

ij(γ
AB
ij )2 + IJσ2 + Iσ2 + Jσ2 + σ2

− 2(Iσ2)− 2(Jσ2) + 2σ2 + 2σ2 − 2σ2 − 2σ2

= IJσ2 − Iσ2 − Jσ2 + σ2 + K ·
∑

ij(γ
AB
ij )2

= I(J − 1)σ2 − (J − 1)σ2 + K ·
∑

ij(γ
AB
ij )2

= (I − 1)(J − 1)σ2 + K ·
∑

ij(γ
AB
ij )2

∴ E [MSAB] := E
[

SSAB
νAB

]
= E[SSAB]

(I−1)(J−1) = σ2 + K
(I−1)(J−1) ·

∑
ij(γ

AB
ij )2
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Mean Squares as Point Estimators of σ2

Proposition
(Point Estimation of Mean Squares)
Given a 2F balanced exp. satisfying the 2F bcrANOVA assumptions. Then:

(i) Regardless of the truthness of HA
0 ,H

B
0 ,H

AB
0 =⇒ E[MSres] = σ2

(ii) HA
0 is true =⇒ E[MSA] = σ2, HA

0 is false =⇒ E[MSA] > σ2

(iii) HB
0 is true =⇒ E[MSB] = σ2, HB

0 is false =⇒ E[MSB] > σ2

(iv) HAB
0 is true =⇒ E[MSAB] = σ2, HAB

0 is false =⇒ E[MSAB] > σ2

PROOF:

(i) Follows immediately from the Expected Mean Squares proposition.
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MSA as Point Estimator of σ2: Proof of (ii)

Recall from the Expected Mean Squares proposition that

E[MSA] = σ2 +
JK

I − 1
·
∑

i(α
A
i )2

Then:

HA
0 is true =⇒ αA

1 = αA
2 = · · · = αA

I = 0
=⇒

∑
i(α

A
i )2 = 0

=⇒ E[MSA] = σ2

HA
0 is false =⇒ At least two of the αA’s 6= 0

=⇒
∑

i(α
A
i )2 > 0

=⇒ E[MSA] > σ2
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MSB as Point Estimator of σ2: Proof of (iii)

Recall from the Expected Mean Squares proposition that

E[MSB] = σ2 +
IK

J − 1
·
∑

j(α
B
j )2

Then:

HB
0 is true =⇒ αB

1 = αB
2 = · · · = αB

J = 0
=⇒

∑
j(α

B
j )2 = 0

=⇒ E[MSB] = σ2

HB
0 is false =⇒ At least two of the αB’s 6= 0

=⇒
∑

j(α
B
j )2 > 0

=⇒ E[MSB] > σ2
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MSAB as Point Estimator of σ2: Proof of (iv)

Recall from the Expected Mean Squares proposition that

E[MSAB] = σ2 +
K

(I − 1)(J − 1)
·
∑

ij(γ
AB
ij )2

Then:

HAB
0 is true =⇒ γAB

11 = γAB
12 = · · · = γAB

1J = γAB
21 = · · · = γAB

IJ = 0
=⇒

∑
ij(γ

AB
ij )2 = 0

=⇒ E[MSAB] = σ2

HAB
0 is false =⇒ At least two of the γAB’s 6= 0

=⇒
∑

ij(γ
AB
ij )2 > 0

=⇒ E[MSAB] > σ2

Josh Engwer (TTU) 2-Factor Balanced Completely Randomized ANOVA 2018 60 / 80



2F bcrANOVA (Effect Size Measures)

YEAR NAME MEASURE

1925†
Fisher

(Eta-Squared)

η̂2
A := SSA

SStotal
= νAfA

νAfA+νBfB+νABfAB+νres

η̂2
B := SSB

SStotal
= νBfB

νAfA+νBfB+νABfAB+νres

η̂2
AB := SSAB

SStotal
= νABfAB

νAfA+νBfB+νABfAB+νres

η̂2
res := SSres

SStotal

1965‡
Cohen♠♣

(Partial η2)

η̂2
(A) := SSA

SSA+SSres
= νAfA

νAfA+νres

η̂2
(B) := SSB

SSB+SSres
= νBfB

νBfB+νres

η̂2
(AB) := SSAB

SSAB+SSres
= νABfAB

νABfAB+νres

η̂2
A + η̂2

B + η̂2
AB + η̂2

res = 1 but η̂2
(A) + η̂2

(B) + η̂2
(AB) > 1

†R.A. Fisher, Statistical Methods for Reasearch Workers, 1925.
‡B.B. Wolman (Ed.), Handbook of Clinical Psychology, 1965. (§5 by J. Cohen)
♠F.J. Gravetter, L.B. Wallnau, Statistics for the Behavioral Sciences, 7th Ed., 2007.
♣R.G. Lomax, D.L. Hahs-Vaughn, Statistical Concepts: A 2nd Course, 4th Ed., 2012.

Josh Engwer (TTU) 2-Factor Balanced Completely Randomized ANOVA 2018 61 / 80



2F bcrANOVA (Effect Size Interpretation)

EFFECT SIZE VALUE: INTERPRETATION:

η̂2
A := SSA

SSA+SSB+SSAB+SSres
= 0.38

38% of the variation in the reponse
is due to Factor A

η̂2
B := SSB

SSA+SSB+SSAB+SSres
= 0.02

2% of the variation in the reponse
is due to Factor B

η̂2
AB := SSAB

SSA+SSB+SSAB+SSres
= 0.27

27% of the variation in the reponse
is due to Interaction AB

η̂2
res := SSres

SSA+SSB+SSAB+SSres
= 0.33

33% of the variation in the reponse
is unexplained with experiment

η̂2
(A) := SSA

SSA+SSres
= 0.43

43% of the variation possibly due to A
is actually due to A

η̂2
(B) := SSB

SSB+SSres
= 0.65

65% of the variation possibly due to B
is actually due to B

η̂2
(AB) := SSAB

SSAB+SSres
= 0.31

31% of the variation possibly due to AB
is actually due to AB
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2F bcrANOVA (More Effect Size Measures)

YEAR NAME MEASURE

1963†
Hays

(Omega-Squared)

ω̂2
A := SSA−νAMSres

SStotal+MSres
= νAfA−νA

νAfA+νBfB+νABfAB+n

ω̂2
B := SSB−νBMSres

SStotal+MSres
= νBfB−νB

νAfA+νBfB+νABfAB+n

ω̂2
AB := SSAB−νABMSres

SStotal+MSres
= νABfAB−νAB

νAfA+νBfB+νABfAB+n

1979‡
Keren-Lewis

(Partial ω2)

ω̂2
(A) := SSA−νAMSres

SSA+(n−νA)MSres
= νA(fA−1)

νA(fA−1)+n

ω̂2
(B) := SSB−νBMSres

SSB+(n−νB)MSres
= νB(fB−1)

νB(fB−1)+n

ω̂2
(AB) := SSAB−νABMSres

SSAB+(n−νAB)MSres
= νAB(fAB−1)

νAB(fAB−1)+n

n := IJK = (1 + νA)(1 + νB)K

†W.L. Hays, Statistics for Psychologists, 1963.

‡G. Keren, C. Lewis, “Partial Omega Squared for ANOVA Designs”,
Educational & Psychological Measurement, 39 (1979), 119-128.
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Eta-Squared or Partial Eta-Squared??

There has been discussion regarding which effect size measure (eta-squared
& partial eta-squared) is better for multi-factor ANOVA – the short answer
being it depends on the particular multi-factor design(s) and whether
meta-analyses will be performed†‡♦♣.

To play it safe, we shall always report both η2 & η2
(·). Ditto for ω2 & ω2

(·).

†J. Cohen, “Eta-Squared and Partial Eta-Squared in Fixed Factor ANOVA Designs”, Educational
& Psychological Measurement, 33 (1973), 107-112.
‡T.R. Levine, C.R. Hullett, “Eta Squared, Partial Eta Squared, and Misreporting of Effect Size in
Communication Research”, Human Communication Research, 28 (2002), 612-625.
♦S. Olejnik, J. Algina, “Generalized Eta and Omega Squared Statistics: Measures of Effect Size
for Some Common Research Designs”, Psychological Methods, 8 (2003), 434-447.
♣C.A. Pierce, R.A. Block, H. Aguinis, “Cautionary Note on Reporting Eta-Squared Values from
Multifactor ANOVA Designs”, Educational and Psychological Measurement, 64 (2004), 916-924.
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2F bcrANOVA (Post-Hoc Comparisons)

Proposition
Given a 2-factor experiment with I levels of factor A, J levels of factor B, and
each group has K > 1 measurements. [νres := IJ(K − 1)]

Moreover, 2F bcrANOVA accepts HAB
0 and rejects HA

0 at significance level α.

Then, to determine which levels of factor A significantly differ:
1 Compute the factor A significant difference width:

wA = q∗I,νres;α
·
√

MSres/(JK)

2 Sort the I factor A level means in ascending order:

x(1)•• ≤ x(2)•• ≤ · · · ≤ x(I)••

3 For each sorted factor A level mean x(i)••:

If x(i+1)•• 6∈
[
x(i)••, x(i)•• + wA

]
, repeat STEP 3 with next sorted mean.

Else, underline x(i)•• and all larger means within a distance of wA with new
line.
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2F bcrANOVA (Post-Hoc Comparisons)

Proposition
Given a 2-factor experiment with I levels of factor A, J levels of factor B, and
each group has K > 1 measurements. [νres := IJ(K − 1)]

Moreover, 2F bcrANOVA accepts HAB
0 and rejects HB

0 at significance level α.

Then, to determine which levels of factor B significantly differ:
1 Compute the factor B significant difference width:

wB = q∗J,νres;α
·
√

MSres/(IK)

2 Sort the J factor B level means in ascending order:

x•(1)• ≤ x•(2)• ≤ · · · ≤ x•(J)•

3 For each sorted factor B level mean x•(j)•:

If x•(j+1)• 6∈
[
x•(j)•, x•(j)• + wB

]
, repeat STEP 3 with next sorted mean.

Else, underline x•(j)• and all larger means within a distance of wB with new
line.
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Post-Hoc Comparisons with a Significant Interaction

Post-hoc comparisons when there is a statistically significant interaction
(i.e. 2F bcrANOVA rejects HAB

0 ) are far trickier and, hence, beyond the scope
of this course.

Interested readers may consult any of the following:

L.E. Toothaker, Multiple Comparison Procedures, SAGE, 1992. (Ch 5)

P.H. Westfall et al, Multiple Comparisons & Multiple Tests using SAS, SAS Inst., 1999. (§9.2.4)

Y. Hochberg et al, Multiple Comparison Procedures, Wiley, 1987. (§10.5)

G. Keppel, Design and Analysis: A Researcher’s Handbook, Pearson, 1991.

R.J. Boik, “The Analysis of Two-Factor Interactions in Fixed Effects Linear Models”,
Journal of Educational Statistics, 18 (1993), 1-40.
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PART V

PART V:

2-Factor ANOVA Model (Adequacy) Checking

Standardized Residuals

Checking for Outliers

Checking Normality Assumption

Checking Independence Assumption

Checking Equal Variances Assumption
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ANOVA Model Checking: Standardized Residuals

Definition
(Standardized Residuals)

Given a balanced 2-factor experiment:

Xijk = µ+ αA
i + αB

j + γAB
ij + Eijk

Moreover, suppose 2F bcrANOVA was performed accordingly.

Then, the standardized residuals† are defined to be:

zres
ijk :=

xres
ijk√

SSres/(n− 1)

An alternative definition‡ that’s reasonable but not used here is:
xres

ijk√
MSres

†Dean, Voss, Draguljić, Design & Analysis of Experiments, 2nd Ed, 2017. (§6.2.3)
‡D.C. Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§5.3.3)
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ANOVA Model Checking: No Outliers
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ANOVA Model Checking: No Outliers
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ANOVA Model Checking: Outlier Mitigation

Q: How to handle outliers when performing 2F ANOVA?

A: For each outlier:

If outlier was due to measurement/calculation error, correct it†‡.
Else, outlier may be due to violation(s) of the ANOVA assumptions†.
Else, the 2-factor linear model may be insufficient†:

Consider building a 3-Factor ANOVA model... (beyond scope of course)
...or an Analysis of Covariance (ANCOVA) model (beyond scope of course)

“We should be careful not to reject or discard an outlying observation unless
we have reasonably non-statistical grounds for doing so. At worst, you may
end up with two analyses; one with the outlier and one without.”‡

†Dean, Voss, Draguljić, Design & Analysis of Experiments, 2nd Ed, 2017. (§5.4)
‡D.C. Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.4.1)
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ANOVA Model Checking: Normality Satisfied
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ANOVA Model Checking: Normality Mitigation

Q: How to perform a 2F ANOVA when the Normality Assumption is violated?

A: Alas, there’s no 2F non-parametric ANOVA due to presence of interaction.

Instead, consider using a regression model with dummy variables♠.

♠ Mendenhall, Sincich, A 2nd Course in Statistics: Regression Analysis, 7th Ed, Pearson, 2012.
(§5.8, §11.5, §12.5)
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ANOVA Model Checking: Independence Satisfied
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ANOVA Model Checking: Independence Mitigation

Q: How to perform a 2F ANOVA when Independence is violated?

A: This is where things become frustrating:

If randomization was not used, redo the experiment using randomization‡.
If randomization was used, then use a more complicated model†:

3-Factor ANOVA – beyond scope of course (but covered in §11.3 of Devore)
Analysis of Covariance (ANCOVA) – beyond scope of this course

†Dean, Voss, Draguljić, Design & Analysis of Experiments, 2nd Ed, 2017. (§5.5)
‡D.C. Montgomery, Design & Analysis of Experiments, 7th Ed, Wiley, 2009. (§3.4.2)
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ANOVA Model Checking: Equi-Variance Satisfied
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ANOVA Model Checking: Equi-Variance Mitigation

Q: How to perform 2F ANOVA when Equi-Variance Assumption is violated?

A: Perform an appropriate variance-stabilizing data transformation†‡♣ first:

log X, log(1 + X), log(1 + min xij + X),√
X,
√

0.5 + X,
√

X +
√

1 + X,
1/X, 1/

√
X, arcsin(

√
X), 2 arcsin(

√
X ± 1/2m)

If data are counts or Poisson-like, use a square-root transformation†‡♣.
If data are proportions or Binomial-like, use an arcsine transformation†♣.
When in doubt, plot log si vs. log(xi•) to help determine data transformation†‡.
If data transformations don’t help much, a more robust method is necessary♥.

NOTE: Data transformations are beyond the scope of this course.

†Dean, Voss, Draguljić, Design & Analysis of Experiments, 2nd Ed, 2017. (§5.6.2)
‡D.C. Montgomery, Design & Analysis of Experiments, 7th Ed, 2009. (§3.4.3)
♣D.C. Howell, Statistical Methods for Psychology, 7th Ed, 2010. (§11.9)
♥Grissom, “Heterogeneity of Variance in Clinical Data”, J. Cons. & Clin. Psy., 68 (2000), 155-165.
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Textbook Logistics for Section 11.2

CONCEPT TEXTBOOK
NOTATION

SLIDES/OUTLINE
NOTATION

Sum of Squares of Factor A SSTr SSA

Mean Square of Factor A MSTr MSA

Sum of Squares of Residuals SSE SSres

Mean Square of Residuals MSE MSres

Effect of ith Factor A αi αA
i

Interaction of Factors A & B γij γAB
ij

Null Hypothesis for Factor A H0A HA
0

Alt. Hypothesis for Factor A HaA HA
A

Null Hypothesis for Interaction AB H0AB HAB
0

Alt. Hypothesis for Interaction AB HaAB HAB
A

Expected Value E(X) E[X]
Variance V(X) V[X]

Ignore “Models with Mixed and Random Effects” section.
The ANOVA procedure is identical as for fixed effects linear models.
However, model assumption checking is subtler and trickier.
Also, expected mean squares differ in expression.
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Fin

Fin.
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