2F Unbalanced Completely Randomized ANOVA Engineering Statistics II

Josh Engwer

TTU

2019

Unbalanced 2F ANOVA (2F ucrANOVA)

Definition

(Unbalanced Experiment)

An experiment with unequal group sizes is an unbalanced experiment.

SYNONYMS: Unbalanced/Non-orthogonal data/design/model/ANOVA

Unbalanced 1F ANOVA (1F ucrANOVA) was covered in §10.3 of this course.

FACTOR B: \rightarrow	Level 1	Level 2
FACTOR A: \downarrow	$(x_{\bullet 1})$	$(x_{\bullet 2})$
Level 1 $(x_{1\bullet})$	$\begin{array}{c} x_{111}, \ x_{112} \\ x_{113}, \ x_{114} \end{array}$	x_{121}, x_{122}
Level 2 $(x_{2\bullet})$	x_{211}, x_{212}	$x_{221}, x_{222}, x_{223}$
Level 3 $(x_{3\bullet})$	<i>x</i> ₃₁₁	x_{321}, x_{322}

Prototype 3×2 (Factor A × Factor B) unbalanced experiment

 $(x_{ijk} \equiv k^{th} \text{ measurement at } i^{th} \text{ level of factor A } \& j^{th} \text{ level of factor B})$

Definition

(Unbalanced Experiment)

An experiment with unequal group sizes is an unbalanced experiment.

SYNONYMS: Unbalanced/Non-orthogonal data/design/model/ANOVA

Unbalanced 1-factor experiments were handled in §10.3 earlier in the course.

Unfortunately, unbalanced 2-factor experiments are far trickier to analyze:

- **O** Sums of squares & F stat values are no longer (nearly) independent^{\ddagger}.
- Partitioning the sums of squares may no longer work^{†‡}.

	SS_A , SS_B , SS_{AB} , SS_{err} are independent
Balanced 2F Data	f_A, f_B, f_{AB} are nearly independent (for large K)
	Always, $SS_A + SS_B + SS_{AB} + SS_{err} = SS_{total}$
Unbalanced 2F Data	SS_A , SS_B , SS_{AB} , SS_{err} are dependent
	f_A, f_B, f_{AB} are dependent
	Often, $SS_A + SS_B + SS_{AB} + SS_{err} \neq SS_{total}$

So, how does one perform 2-factor ANOVA with unbalanced data?

The immediate solution is frowned upon by Lomax & Hahs-Vaughn[†]:

(pg 103): "A rather silly approach, and one that we do not condone, is to delete enough data until you have an equal (group size) model."

i.e. Removing measurements to yield a balanced model is a big no-no!

Three viable solutions exist due to Frank Yates in 1934*:

NAME IN SAS/SPSS:	OTHER COMMON NAME:
Type I Sum of Squares	Yates' Sequential Method
Type II Sum of Squares	Yates' Fitting Constants Method
Type III Sum of Squares	Yates' Weighted Square Means Method

*F. Yates, "The Analysis of Multiple Classifications with Unequal Numbers in the Different Classes", *J. American Statistical Association*, **29** (1934), 51-66.

Many advanced stats books recommend using Type III sums of squares^{†‡}.

However, Øyvind Langsrud disagrees and recommends Type II:

Ø. Langsrud, "ANOVA for Unbalanced Data: Use Type II instead of Type III Sums of Squares", *Statistics and Computing*, **13** (2003), 163-167.

Anyway, unbalanced 2-factor ANOVA will never be considered in this course.

Papers on History of 2F ucrANOVA

First paper on 2F ucrANOVA:

F. Yates, "The Analysis of Multiple Classifications with Unequal Number in the Different Classes", *J. American Statistical Association*, **29** (1934), 51-66.

Consult the following papers for more about 2F ucrANOVA:

Y. Fujikoshi, "Two-way ANOVA Models with Unbalanced Data", *Discrete Mathematics*, **116** (1993), 315-334.

D.G. Herr, "On the History of ANOVA of Unbalanced, Factorial Designs: The First 30 Years", *The American Statistician*, **40** (1986), 265-270.

[†]R.G. Lomax, D.L. Hahs-Vaughn, *Statistical Concepts: A* 2nd *Course*, 4th Ed, Routledge, 2012. [‡]J.P. Stevens, *Intermediate Statistics: A Modern Approach*, 3rd Ed, Taylor & Francis, 2007.

Fin.