Large-Sample *z*-Tests/*z*-Cl's for $\mu_1 - \mu_2$ Engineering Statistics II Section 9.1

Josh Engwer

TTU

2018

PART I:

Standard Normal Distribution

Carl Friedrich Gauss (1777-1855)

Sometimes a normal distribution is called a Gaussian distribution.

Definition

Notation	$Z \sim Normal(0,1)$ or $Z \sim StdNormal$		
Parameters	(None)		
Support	$Supp(Z) = (-\infty,\infty)$		
pdf	$f_Z(z) := \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$		
cdf	$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\xi^2/2} d\xi$		
Mean	$\mathbb{E}[Z]=0$		
Variance	$\mathbb{V}[Z] = 1$		
Model(s)	(Used mainly for Statistical Inference)		

Properties of Standard Normal distribution:

- The standard normal pdf curve is unimodal.
- The standard normal pdf curve is bell-shaped.
- The standard normal pdf curve is symmetric.

PROOF: Beyond scope of course. Take Mathematical Statistics.

z-Cutoffs (AKA *z* Critical Values) (Definition)

A key component to some CI's & hypothesis tests is the *z*-cutoff:

Definition

 z_{α}^{*} is called a *z*-cutoff of the std normal distribution such that its upper-tail probability is exactly its subscript value α : (*Z* ~ StdNormal)

$$\mathbb{P}(Z > z^*_\alpha) = \alpha$$

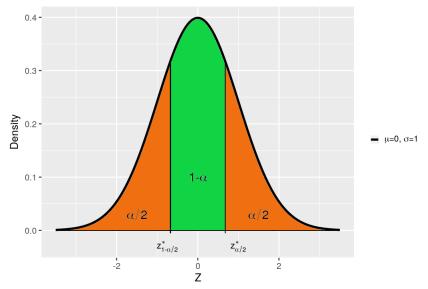
<u>NOTE</u>: Do <u>not</u> confuse *z*-cutoff z_{α}^* with *z* percentile z_{α} :

$$\mathbb{P}(Z \le z_{\alpha}) = \alpha$$

Another name for *z*-cutoff is *z* critical value.

z-Cutoffs (Example Plot)

pdf of Normal Distribution



Lower-tail *z*-cutoffs can be determined from appropriate upper-tail *t*-cutoffs:

$$z_{1-\alpha}^* = -z_{\alpha}^*$$

PROOF: Follows from the fact that the std normal distribution is symmetric.

STD NORMAL z-CUTOFFS, $z_{\alpha}^* \qquad \mathbb{P}(Z > z_{\alpha}^*) = \alpha, \quad z_{1-\alpha}^* = -z_{\alpha}^*$

α	0.2	0.1	0.05	0.025	0.02	0.01	0.005	0.001	0.0005
z^*_{lpha}	0.842	1.282	1.645	1.960	2.054	2.326	2.576	3.090	3.291

PART II:

Large-Sample *z*-Tests & *z*-Cl's (Unknown Population Variances σ_1^2, σ_2^2)

Theorem

Given any two populations with means μ_1, μ_2 and unknown σ_1, σ_2 . Let $\mathbf{X} := (X_1, \ldots, X_{n_1})$ be a random sample from the 1st population. Let $\mathbf{Y} := (Y_1, \ldots, Y_{n_2})$ be a random sample from the 1st population. Moreover, suppose random samples $\mathbf{X} \& \mathbf{Y}$ are independent of each other. Moreover, let the sample sizes be "large", meaning $n_1, n_2 > 40$. Then:

$$rac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{rac{S_1^2}{n_1}+rac{S_2^2}{n_2}}} \overset{approx}{\sim} \mathit{StdNormal}$$

PROOF: Beyond scope of course. Take Mathematical Statistics.

Population:	Any Two Populations with unknown σ_1, σ_2		
Realized Samples:	$ \begin{array}{l} \mathbf{x} := (x_1, x_2, \cdots, x_{n_1}), \textit{ mean } \overline{x}, \textit{ std dev } s_1 (n_1 > 40) \\ \mathbf{y} := (y_1, y_2, \cdots, y_{n_2}), \textit{ mean } \overline{y}, \textit{ std dev } s_2 (n_2 > 40) \\ \textit{ Samples } \mathbf{x} \And \mathbf{y} \textit{ are independent of each other} \end{array} $		
Test Statistic Value:	$z = \frac{(\overline{x} - \overline{y}) - \delta_0}{1 - \delta_0}$		
$W(\mathbf{x},\mathbf{y};\delta_0)$	$z = \frac{(\bar{x} - \bar{y}) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$		
HYPOTHESIS TEST:		REJECTION REGION AT LVL $lpha$:	
$H_0: \mu_1 - \mu_2 = \delta_0$ vs. $H_A: \mu_1 - \mu_2 > \delta_0$		$z \ge z_{\alpha}^*$	
$H_0: \mu_1 - \mu_2 = \delta_0$ vs. $H_A: \mu_1 - \mu_2 < \delta_0$		$z \le z_{1-lpha}^*$	
$H_0: \mu_1 - \mu_2 = \delta_0 \text{ vs. } H_A: \mu_1 - \mu_2 \neq \delta_0 \mid z \leq z^*_{1-\alpha/2} \text{ or } z \geq z^*_{\alpha/2}$			

Large-Sample *z*-Test for $\mu_1 - \mu_2$ (Unknown σ_1, σ_2)

Proposition

Population:	Any Two Populations with unknown σ_1, σ_2		
Realized Samples:	$ \begin{array}{c} \mathbf{x} := (x_1, x_2, \cdots, x_{n_1}), \textit{ mean } \overline{x}, \textit{ std dev } s_1 (n_1 > 40) \\ \mathbf{y} := (y_1, y_2, \cdots, y_{n_2}), \textit{ mean } \overline{y}, \textit{ std dev } s_2 (n_2 > 40) \\ \textit{ Samples } \mathbf{x} \And \mathbf{y} \textit{ are independent of each other } \end{array} $		
Test Statistic Value:	$(\overline{x} - \overline{y}) - \delta_0$		
$W(\mathbf{x},\mathbf{y};\delta_0)$	$z = \frac{(\bar{x} - \bar{y}) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$		
HYPOTHESIS TEST:		P-VALUE DETERMINATION:	
$H_0: \mu_1 - \mu_2 = \delta_0$ vs.	$H_A: \mu_1 - \mu_2 > \delta_0$	P-value = $1 - \Phi(z)$	
$H_0: \mu_1 - \mu_2 = \delta_0$ vs.	$H_A: \mu_1 - \mu_2 < \delta_0$	P-value $= \Phi(z)$	
$H_0: \mu_1 - \mu_2 = \delta_0$ vs.	$H_A: \mu_1 - \mu_2 \neq \delta_0$	$\textit{P-value} = 2 \cdot [1 - \Phi(z)]$	
		n reject H_0 in favor of H_A n accept H_0 (i.e. fail to reject H_0)	

Large-Sample *z*-Cl for $\mu_1 - \mu_2$ (Motivation)

Given any two populations with means μ_1, μ_2 and unknown σ_1, σ_2 . Let $\mathbf{X} := (X_1, \ldots, X_{n_1})$ be random sample from the 1st population with $n_1 > 40$. Let $\mathbf{Y} := (Y_1, \ldots, Y_{n_2})$ be random sample from the 2nd population with $n_2 > 40$. Moreover, suppose random samples $\mathbf{X} \& \mathbf{Y}$ are independent of each other. Then, construct the $100(1 - \alpha)\%$ Cl for parameter difference $\mu_1 - \mu_2$:

- Produce suitable **pivot**: $Q(\mathbf{X}, \mathbf{Y}; \mu_1, \mu_2) := [(\overline{X} \overline{Y}) (\mu_1 \mu_2)] / \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
- **2** Then pivot is approx. standard normal: $Q(\mathbf{X}, \mathbf{Y}; \mu_1, \mu_2) \stackrel{approx}{\sim} \text{StdNormal}$
- So Find constants a < b such that $\mathbb{P}(a < Q(\mathbf{X}, \mathbf{Y}; \mu_1, \mu_2) < b) = 1 \alpha$

Since std normal pdf is symmetric,

$$\sum_{i=1}^{n} \begin{cases} a = z_{1-\alpha/2}^{*} = -z_{\alpha/2}^{*} \\ b = z_{\alpha/2}^{*} \end{cases}$$

Solution Manipulate the inequalities to isolate parameter difference $\mu_1 - \mu_2$:

$$\overline{X} - \overline{Y}) - z_{\alpha/2}^* \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} < \mu_1 - \mu_2 < (\overline{X} - \overline{Y}) + z_{\alpha/2}^* \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

- **5** Take independent samples $\mathbf{x} := (x_1, \cdots, x_{n_1}) \& \mathbf{y} := (y_1, \cdots, y_{n_2}).$
- **(9)** Replace point estimators \overline{X} , \overline{Y} , S_1 , S_2 with \overline{x} , \overline{y} , s_1 , s_2 from the samples:

$$(\overline{x} - \overline{y}) - z_{\alpha/2}^* \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \mu_1 - \mu_2 < (\overline{x} - \overline{y}) + z_{\alpha/2}^* \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

2

Given any two populations with means μ_1, μ_2 and unknown σ_1, σ_2 . Let x_1, x_2, \dots, x_{n_1} be a sample taken from the 1st population with $n_1 > 40$. Let y_1, y_2, \dots, y_{n_2} be a sample taken from the 2nd population with $n_2 > 40$. Moreover, suppose samples **x** & **y** are independent of each other. Then the $100(1 - \alpha)$ % **large-sample** *z*-**Cl** for $\mu_1 - \mu_2$ is

$$\left((\bar{x}-\bar{y})-z_{\alpha/2}^*\cdot\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}},\ (\bar{x}-\bar{y})+z_{\alpha/2}^*\cdot\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}\right)$$

--- OR WRITTEN MORE COMPACTLY ----

$$(\bar{x} - \bar{y}) \pm z^*_{\alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION
Probability of Event $A \subseteq \Omega$	P(A)	$\mathbb{P}(A)$
Expected Value of rv X	E(X)	$\mathbb{E}[X]$
Variance of rv X	V(X)	$\mathbb{V}[X]$
Alternative Hypothesis	H_a	H_A
Sample Sizes	m, n	n_1, n_2
z-Cutoffs	$z_{lpha}, \ z_{lpha/2}$	$z^*_{\alpha}, \ z^*_{\alpha/2}$
Hypothesized Mean Difference	Δ_0	δ_0

- Skip "Test Procedures for Pop's with Known Variances" (pg 363-365)
 - In practice, population variances σ_1^2, σ_2^2 will <u>not</u> be known a priori.
- Ignore "β and the Choice of Sample Size" section (pg 366-367)
- Ignore any mention of **one-sided Cl's**.

Fin.