Independent & Pooled *t*-Tests/*t*-Cl's for $\mu_1 - \mu_2$ Engineering Statistics II Section 9.2

Josh Engwer

TTU

2018

PART I:

Gosset's t Distribution

William Sealy Gosset (1876-1937)

Gosset's employer made him publish under the pseudonym "Student". Hence, some textbooks/papers use the term "Student's *t* Distribution".

Josh Engwer (TTU)

Gosset's t Distribution

Definition

Notation	$T \sim t_{ u}$				
Parameters	$ u \equiv \text{\# Degrees of Freedom} (\nu = 1, 2, 3, \cdots) $				
Support	$Supp(T) = (-\infty, \infty)$				
pdf	$f_T(t; u) := rac{\Gamma((u+1)/2)}{\sqrt{\pi u} \cdot \Gamma(u/2)} \cdot rac{1}{[1+(t^2/ u)]^{(u+1)/2}}$				
cdf	$\Phi_t(t;\nu) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\pi\nu}\cdot\Gamma(\nu/2)} \int_{-\infty}^t \frac{1}{[1+(\tau^2/\nu)]^{(\nu+1)/2}} d\tau$				
Mean	$ \begin{split} \mathbb{E}[T] &= +\infty, & \text{for } \nu = 1 \\ \mathbb{E}[T] &= 0, & \text{for } \nu > 1 \end{split} $				
Variance	$ \begin{array}{rcl} \mathbb{V}[T] &=& +\infty, & \text{for } \nu = 1,2 \\ \mathbb{V}[T] &=& \nu/(\nu-2), & \text{for } \nu > 2 \end{array} $				
Model(s)	(Used exclusively for Statistical Inference)				

 ν is the lowercase Greek letter "nu" τ is the lowercase Greek letter "tau"

Proposition

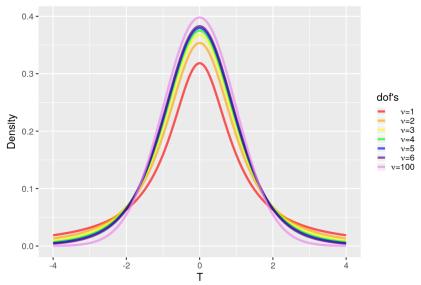
Properties of t distributions:

- The t_{ν} pdf curve is symmetric, bell-shaped and centered at zero.
- The t_{ν} pdf curve is more spread out than the std normal pdf curve.
- The spread of the t_{ν} pdf curve decreases as ν increases.
- As $\nu \to \infty$, the t_{ν} pdf curves approaches the std normal pdf curve.
- Let independent rv's $\left\{ \begin{array}{ll} Z & \sim & {\it StdNormal} \\ X & \sim & \chi^2_{\nu} \end{array} \right.$ Then ${Z\over \sqrt{X/
 u}} \sim t_{
 u}$

PROOF: Beyond scope of course. Take Mathematical Statistics.

Gosset's *t* Distribution (Plots)

pdf of t Distribution (T \sim t_v)



t-Cutoffs (AKA *t* Critical Values) (Definition)

A key component to some CI's & hypothesis tests is the *t*-cutoff:

Definition

 $t_{\nu;\alpha}^*$ is called a *t*-cutoff of the t_{ν} distribution such that its upper-tail probability is exactly its subscript value α : (Here, $T \sim t_{\nu}$)

$$\mathbb{P}(T > t^*_{\nu;\alpha}) = \alpha$$

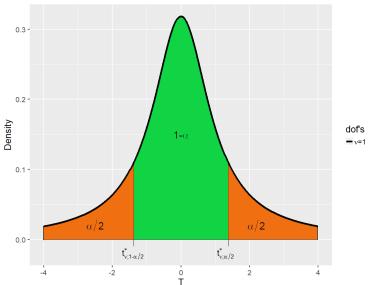
<u>NOTE</u>: Do <u>not</u> confuse *t*-cutoff $t_{\nu;\alpha}^*$ with *t* percentile $t_{\nu;\alpha}$:

$$\mathbb{P}(T \le t_{\nu;\alpha}) = \alpha$$

Another name for *t*-cutoff is *t* critical value.

t-Cutoffs (Example Plot)

pdf of t Distribution (T ~ t_v)



Proposition

Lower-tail t-cutoffs can be determined from appropriate upper-tail t-cutoffs:

$$t^*_{\nu;1-\alpha} = -t^*_{\nu;\alpha}$$

PROOF: Follows from the fact that *t* distributions are symmetric.

t-Cutoffs Table

GOSSET'S *t*-CUTOFFS, $t_{\nu;\alpha}^*$ $\mathbb{P}(T > t_{\nu;\alpha}^*) = \alpha$, $t_{\nu;1-\alpha}^* = -t_{\nu;\alpha}^*$

ν^{α}	0.2	0.1	0.05	0.025	0.02	0.01	0.005	0.001	0.0005
1	1.376	3.078	6.314	12.706	15.895	31.821	63.657	318.309	636.619
2	1.061	1.886	2.920	4.303	4.849	6.965	9.925	22.327	31.599
3	0.978	1.638	2.353	3.182	3.482	4.541	5.841	10.215	12.924
4	0.941	1.533	2.132	2.776	2.999	3.747	4.604	7.173	8.610
5	0.920	1.476	2.015	2.571	2.757	3.365	4.032	5.893	6.869
6	0.906	1.440	1.943	2.447	2.612	3.143	3.707	5.208	5.959
7	0.896	1.415	1.895	2.365	2.517	2.998	3.499	4.785	5.408
8	0.889	1.397	1.860	2.306	2.449	2.896	3.355	4.501	5.041
9	0.883	1.383	1.833	2.262	2.398	2.821	3.250	4.297	4.781
10	0.879	1.372	1.812	2.228	2.359	2.764	3.169	4.144	4.587
11	0.876	1.363	1.796	2.201	2.328	2.718	3.106	4.025	4.437
12	0.873	1.356	1.782	2.179	2.303	2.681	3.055	3.930	4.318
13	0.870	1.350	1.771	2.160	2.282	2.650	3.012	3.852	4.221
14	0.868	1.345	1.761	2.145	2.264	2.624	2.977	3.787	4.140
15	0.866	1.341	1.753	2.131	2.249	2.602	2.947	3.733	4.073
16	0.865	1.337	1.746	2.120	2.235	2.583	2.921	3.686	4.015
17	0.863	1.333	1.740	2.110	2.224	2.567	2.898	3.646	3.965

Josh Engwer (TTU)

Independent & Pooled *t*-Tests/*t*-Cl's for $\mu_1 - \mu_2$

PART II:

Independent *t*-Tests & Independent *t*-Cl's (Unknown Population Variances σ_1^2, σ_2^2)

Theorem

Let $\mathbf{X} := (X_1, \dots, X_{n_1})$ be a random sample from a <u>Normal</u>(μ_1, σ_1^2) population. Let $\mathbf{Y} := (Y_1, \dots, Y_{n_2})$ be a random sample from a <u>Normal</u>(μ_2, σ_2^2) population. Moreover, suppose random samples $\mathbf{X} \& \mathbf{Y}$ are independent of each other.

Then:
$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \overset{approx}{\sim} t_{\nu^*} \quad \text{where} \quad \nu^* = \left[\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}} \right]$$

PROOF: Beyond scope of course. Take Mathematical Statistics.

Proposition

Population:	Two <u>Normal</u> Populations with unknown σ_1, σ_2		
Realized Samples:	$\mathbf{x} := (x_1, x_2, \cdots, x_{n_1})$ with mean \overline{x} , std dev s_1 $\mathbf{y} := (y_1, y_2, \cdots, y_{n_2})$ with mean \overline{y} , std dev s_2 Samples $\mathbf{x} \& \mathbf{y}$ are independent of each other		
Test Statistic Value: $W(\mathbf{x},\mathbf{y};\delta_0)$	$t = \frac{(\bar{x} - \bar{y}) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}, \nu^* = \left\lfloor \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}} \right\rfloor$		
HYPOTHESIS	TEST: REJECTION REGION AT LVL α :		
$H_0: \mu_1 - \mu_2 = \delta_0$ vs. H_A	$: \mu_1 - \mu_2 > \delta_0 t \ge t^*_{\nu^*;\alpha}$		
	$: \mu_1 - \mu_2 < \delta_0 t \le t_{\nu^*;1-\alpha}^*$		
$H_0: \mu_1 - \mu_2 = \delta_0$ vs. H_A	$: \mu_1 - \mu_2 \neq \delta_0 \mid t \leq t^*_{\nu^*;1-\alpha/2} \text{ or } t \geq t^*_{\nu^*;\alpha/2}$		

Independent *t*-Test for $\mu_1 - \mu_2$ (Unknown σ_1, σ_2)

Proposition

Population:	Two Normal Populations with unknown σ_1, σ_2		
	$\mathbf{x} := (x_1, x_2, \cdots, x_{n_1})$ with mean \overline{x} , std dev s_1		
Realized Samples:	$\mathbf{y} := (y_1, y_2, \cdots, y_{n_2})$ with mean \overline{y} , std dev s_2		
	Samples $x \And y$ are independent of each other		
Test Statistic Value: $W(\mathbf{x}, \mathbf{y}; \delta_0)$	$t = \frac{(\bar{x} - \bar{y}) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}, \nu^* = \left\lfloor \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}} \right\rfloor$		
HYPOTHESIS	S TEST: P-VALUE DETERMINATION:		
$H_0: \mu_1 - \mu_2 = \delta_0$ vs	$H_A: \mu_1 - \mu_2 > \delta_0$ <i>P</i>-value $= 1 - \Phi_t(t; \nu^*)$	_	
$H_0: \mu_1 - \mu_2 = \delta_0$ vs	$H_A: \mu_1 - \mu_2 < \delta_0 \mid \textbf{\textit{P-value}} = \Phi_t(t; \nu^*)$		
$H_0: \mu_1 - \mu_2 = \delta_0$ vs	$H_A: \mu_1 - \mu_2 \neq \delta_0 \mid \textbf{P-value} = 2 \cdot [1 - \Phi_t(t ; \nu^*)]$		
DECISION RULE: If <i>P</i> -value $\leq \alpha$ then reject H_0 in favor of H_A If <i>P</i> -value $> \alpha$ then accept H_0 (i.e. fail to reject H_0)			

Josh Engwer (TTU)

t-CI for Normal Pop. Difference $\mu_1 - \mu_2$ (Motivation)

Let $\mathbf{X} := (X_1, \dots, X_{n_1})$ be a random sample from a <u>Normal</u> (μ_1, σ_1^2) population. Let $\mathbf{Y} := (Y_1, \dots, Y_{n_2})$ be a random sample from a <u>Normal</u> (μ_2, σ_2^2) population. Moreover, suppose random samples $\mathbf{X} \& \mathbf{Y}$ are independent of each other. Then, construct the $100(1 - \alpha)\%$ CI for parameter difference $\mu_1 - \mu_2$:

- Produce suitable **pivot**: $Q(\mathbf{X}, \mathbf{Y}; \mu_1, \mu_2) := [(\overline{X} \overline{Y}) (\mu_1 \mu_2)] / \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
- **2** Then the pivot is approximately an *t* distribution: $Q(\mathbf{X}, \mathbf{Y}; \mu_1, \mu_2) \overset{approx}{\sim} t_{\nu^*}$
- Since t_{ν} pdf is symmetric, $\begin{cases} a = t_{\nu^*;1-\alpha/2}^* = -t_{\nu^*;\alpha/2}^* \\ b = t_{\nu^*;\alpha/2}^* \end{cases}$
- Solution Manipulate the inequalities to isolate parameter difference $\mu_1 \mu_2$:

$$(\overline{X} - \overline{Y}) - t_{\nu^*;\alpha/2}^* \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} < \mu_1 - \mu_2 < (\overline{X} - \overline{Y}) + t_{\nu^*;\alpha/2}^* \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

- **5** Take independent samples $\mathbf{x} := (x_1, \cdots, x_{n_1}) \& \mathbf{y} := (y_1, \cdots, y_{n_2}).$
- Solution Replace point estimators \overline{X} , \overline{Y} , S_1 , S_2 with \overline{x} , \overline{y} , s_1 , s_2 from the samples:

$$(\bar{x} - \bar{y}) - t^*_{\nu^*;\alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \mu_1 - \mu_2 < (\bar{x} - \bar{y}) + t^*_{\nu^*;\alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Independent *t*-Cl for $\mu_1 - \mu_2$ (Unknown σ_1, σ_2)

Proposition

Given two <u>normal</u> populations with means μ_1 and μ_2 . Let x_1, x_2, \dots, x_{n_1} be a sample taken from 1st population. Let y_1, y_2, \dots, y_{n_2} be a sample taken from 2nd population. Moreover, suppose samples **x** & **y** are independent of each other. Then the $100(1 - \alpha)\%$ **independent** *t*-**Cl for** $\mu_1 - \mu_2$ is

$$\left((\bar{x}-\bar{y})-t^*_{\nu^*;\alpha/2}\cdot\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}},\ (\bar{x}-\bar{y})+t^*_{\nu^*;\alpha/2}\cdot\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}\right)$$

--- OR WRITTEN MORE COMPACTLY ---

$$(\overline{x} - \overline{y}) \pm t_{\nu^*;\alpha/2}^* \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$
where $\nu^* = \left[\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}\right]$

Independent & Pooled *t*-Tests/*t*-Cl's for $\mu_1 - \mu_2$

PART III:

Pooled *t*-Tests & Pooled *t*-Cl's (Unknown Population Variances $\sigma_1^2 = \sigma_2^2$)

A Pooled Statistic Related to the *t* Distribution

For the case when the two normal populations have equal variance, there is a better statistic to use in *t*-tests & *t*-Cl's called a **pooled statistic**:

Theorem

Let $\mathbf{X} := (X_1, \dots, X_{n_1})$ be a random sample from a <u>Normal</u>(μ_1, σ^2) population. Let $\mathbf{Y} := (Y_1, \dots, Y_{n_2})$ be a random sample from a <u>Normal</u>(μ_2, σ^2) population. Moreover, suppose random samples $\mathbf{X} \& \mathbf{Y}$ are <u>independent</u> of each other. Then:

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{S_{pool}^2 \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t_{n_1 + n_2 - 2} \quad \text{where} \quad S_{pool}^2 := \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

PROOF: Beyond scope of course. Take Mathematical Statistics.

 S_{pool}^2 is the weighted average of the two sample variances. This means the sample with more data provides more information about the population variance σ^2 and, hence, its sample variance has more weight in the average.

Pooled *t*-Test for $\mu_1 - \mu_2$ (Unknown $\sigma_1 = \sigma_2$)

Proposition

Population:	Two <u>Normal</u> Populations with unknown $\sigma_1 = \sigma_2$			
Realized Samples:	$\mathbf{x} := (x_1, x_2, \cdots, x_{n_1}) \text{ with mean } \overline{x}, \text{ std dev } s_1$ $\mathbf{y} := (y_1, y_2, \cdots, y_{n_2}) \text{ with mean } \overline{y}, \text{ std dev } s_2$			
	Samples $\mathbf{x} \& \mathbf{y}$ are independent of each other			
Pooled Sample Variance	$s_{pool}^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$			
Test Statistic Value:	$(\overline{x} - \overline{y}) - \delta_0 \qquad \qquad$			
$W(\mathbf{x},\mathbf{y};\delta_0)$	$t_{pool} = rac{(ar{x} - ar{y}) - \delta_0}{\sqrt{s_{pool}^2 \cdot \left(rac{1}{n_1} + rac{1}{n_2} ight)}}, \ \ u_{pool} = n_1 + n_2 - 2$			
HYPOTHESIS T	EST: REJECTION REGION AT LVL α :			
$H_0: \mu_1 - \mu_2 = \delta_0$ vs. H_A	1 0 0001,000			
	$: \mu_1 - \mu_2 < \delta_0 \mid t_{pool} \le t^*_{\nu_{pool}; 1 - \alpha}$			
$H_0: \mu_1 - \mu_2 = \delta_0$ vs. H_A	$: \mu_1 - \mu_2 \neq \delta_0 \mid t_{pool} \leq t^*_{\nu_{pool}; 1 - \alpha/2} \text{ or } t_{pool} \geq t^*_{\nu_{pool}; \alpha/2}$			

Pooled *t*-Test for $\mu_1 - \mu_2$ (Unknown $\sigma_1 = \sigma_2$)

Proposition

Population:	Two <u>Normal</u> Populations with unknown $\sigma_1 = \sigma_2$			
Realized Samples:	$\mathbf{x} := (x_1, x_2, \cdots, x_{n_1}) \text{ with mean } \overline{x}, \text{ std dev } s_1$ $\mathbf{y} := (y_1, y_2, \cdots, y_{n_2}) \text{ with mean } \overline{y}, \text{ std dev } s_2$			
	Samples x & y are independent of each other			
Pooled Sample Variance	$s_{pool}^{2} = \frac{(n_{1}-1)s_{1}^{2} + (n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2}$			
Test Statistic Value:	$(\overline{x} - \overline{y}) - \delta_0 \qquad \qquad$			
$W(\mathbf{x},\mathbf{y};\delta_0)$	$t_{pool} = rac{(ar{x} - ar{y}) - \delta_0}{\sqrt{s_{pool}^2 \cdot \left(rac{1}{n_1} + rac{1}{n_2} ight)}}, \ \ u_{pool} = n_1 + n_2 - 2$			
HYPOTHESIS T				
$H_0: \mu_1 - \mu_2 = \delta_0$ vs. H_A	$: \mu_1 - \mu_2 > \delta_0 \textbf{P-value} = 1 - \Phi_t(t_{pool}; \nu_{pool})$			
$H_0: \mu_1 - \mu_2 = \delta_0$ vs. H_A	$: \mu_1 - \mu_2 < \delta_0 \mid \textbf{\textit{P-value}} = \Phi_t(t_{pool}; \nu_{pool})$			
$H_0: \mu_1 - \mu_2 = \delta_0$ vs. H_A				
DECISION RULE: If <i>P</i> -value $\leq \alpha$ then reject H_0 in favor of H_A If <i>P</i> -value $> \alpha$ then accept H_0 (i.e. fail to reject H_0)				

Proposition

Given two <u>normal</u> populations with means μ_1 and μ_2 and unknown $\sigma_1^2 = \sigma_2^2$. Let x_1, x_2, \dots, x_{n_1} be a sample taken from the 1st population. Let y_1, y_2, \dots, y_{n_2} be a sample taken from the 2nd population. Moreover, suppose the samples $\mathbf{x} \& \mathbf{y}$ are independent of each other.

Then the $100(1-\alpha)\%$ pooled *t*-Cl for $\mu_1 - \mu_2$ is

$$\begin{pmatrix} (\bar{x} - \bar{y}) - t^*_{\nu_{pool};\alpha/2} \cdot \sqrt{s^2_{pool} \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}, & (\bar{x} - \bar{y}) + t^*_{\nu_{pool};\alpha/2} \cdot \sqrt{s^2_{pool} \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \end{pmatrix}$$

--- OR WRITTEN MORE COMPACTLY ---
$$(\bar{x} - \bar{y}) \pm t^*_{\nu_{pool};\alpha/2} \cdot \sqrt{s^2_{pool} \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$
where $s^2_{pool} = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ and $\nu_{pool} = n_1 + n_2 - 2$

While a pooled *t*-test & *t*-CI bear higher power & narrower width respectively compared to the corresponding independent *t*-test & *t*-CI, they are not robust to violations of equality of population variances.

This lack of robustness in pooled *t*-tests & pooled *t*-Cl's is reflected by the severe errors that occur when the two population variances differ by even a small amount.

Therefore, when unsure if two given normal populations truly have identical variances (and most often they don't), it is recommended to play it safe and use independent *t*-tests & *t*-Cl's.

CONCEPT	TEXTBOOK NOTATION	SLIDES/OUTLINE NOTATION	
Probability of Event $A \subseteq \Omega$	P(A)	$\mathbb{P}(A)$	
Expected Value of rv X	E(X)	$\mathbb{E}[X]$	
Variance of rv X	V(X)	$\mathbb{V}[X]$	
Alternative Hypothesis	H_a	H_A	
Sample Sizes	m, n	n_1, n_2	
Pooled <i>t</i> -Test Stat Value	t	t _{pool}	
t-Cutoffs	$t_{\alpha,\nu}, t_{\alpha/2,\nu}$	$t^*_{\nu;lpha}, t^*_{\nu;lpha/2}$	
Hypothesized Mean Difference	Δ_0	δ_0	

Ignore "Type II Error Probabilities" section. (pg 340-341)

- Turns out computing the power of a 2-sample *t*-test is complicated.
- Ignore any mention of **one-sided Cl's**.

Fin.