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PART I

PART I:

Gosset’s t Distribution
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William Sealy Gosset (1876-1937)

Gosset’s employer made him publish under the pseudonym “Student”.
Hence, some textbooks/papers use the term “Student’s t Distribution”.
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Gosset’s t Distribution

Definition

Notation T ∼ tν

Parameters ν ≡ # Degrees of Freedom (ν = 1, 2, 3, · · · )

Support Supp(T) = (−∞,∞)

pdf fT(t; ν) := Γ((ν+1)/2)√
πν·Γ(ν/2)

· 1
[1+(t2/ν)](ν+1)/2

cdf Φt(t; ν) = Γ((ν+1)/2)√
πν·Γ(ν/2)

∫ t
−∞

1
[1+(τ 2/ν)](ν+1)/2 dτ

Mean
E[T] = +∞, for ν = 1
E[T] = 0, for ν > 1

Variance
V[T] = +∞, for ν = 1, 2
V[T] = ν/(ν − 2), for ν > 2

Model(s) (Used exclusively for Statistical Inference)

ν is the lowercase Greek letter “nu” τ is the lowercase Greek letter “tau”
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Gosset’s t Distribution (Properties)

Proposition
Properties of t distributions:

The tν pdf curve is symmetric, bell-shaped and centered at zero.
The tν pdf curve is more spread out than the std normal pdf curve.
The spread of the tν pdf curve decreases as ν increases.
As ν →∞, the tν pdf curves approaches the std normal pdf curve.

Let independent rv’s
{

Z ∼ StdNormal
X ∼ χ2

ν
. Then

Z√
X/ν

∼ tν

PROOF: Beyond scope of course. Take Mathematical Statistics.
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Gosset’s t Distribution (Plots)
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t-Cutoffs (AKA t Critical Values) (Definition)

A key component to some CI’s & hypothesis tests is the t-cutoff:

Definition
t∗ν;α is called a t-cutoff of the tν distribution such that
its upper-tail probability is exactly its subscript value α: (Here, T ∼ tν)

P(T > t∗ν;α) = α

NOTE: Do not confuse t-cutoff t∗ν;α with t percentile tν;α:

P(T ≤ tν;α) = α

Another name for t-cutoff is t critical value.
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t-Cutoffs (Example Plot)
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t-Cutoffs (Key Property)

Proposition
Lower-tail t-cutoffs can be determined from appropriate upper-tail t-cutoffs:

t∗ν;1−α = −t∗ν;α

PROOF: Follows from the fact that t distributions are symmetric.
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t-Cutoffs Table
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PART II

PART II:

Independent t-Tests & Independent t-CI’s
(Unknown Population Variances σ2

1 , σ
2
2)
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A Statistic Related to the t Distribution

Theorem
Let X := (X1, . . . ,Xn1) be a random sample from a Normal(µ1, σ

2
1) population.

Let Y := (Y1, . . . ,Yn2) be a random sample from a Normal(µ2, σ
2
2) population.

Moreover, suppose random samples X & Y are independent of each other.

Then:
(X − Y)− (µ1 − µ2)√

S2
1

n1
+

S2
2

n2

approx∼ tν∗ where ν∗ =


(

s2
1

n1
+

s2
2

n2

)2

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1



PROOF: Beyond scope of course. Take Mathematical Statistics.
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Independent t-Test for µ1 − µ2 (Unknown σ1, σ2)

Proposition

Population: Two Normal Populations with unknown σ1, σ2

Realized Samples:
x := (x1, x2, · · · , xn1) with mean x, std dev s1
y := (y1, y2, · · · , yn2) with mean y, std dev s2

Samples x & y are independent of each other

Test Statistic Value:
W(x, y; δ0)

t =
(x− y)− δ0√

s2
1

n1
+

s2
2

n2

, ν∗ =


(

s2
1

n1
+

s2
2

n2

)2

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1


HYPOTHESIS TEST: REJECTION REGION AT LVL α :

H0 : µ1 − µ2 = δ0 vs. HA : µ1 − µ2 > δ0 t ≥ t∗ν∗;α

H0 : µ1 − µ2 = δ0 vs. HA : µ1 − µ2 < δ0 t ≤ t∗ν∗;1−α
H0 : µ1 − µ2 = δ0 vs. HA : µ1 − µ2 6= δ0 t ≤ t∗ν∗;1−α/2 or t ≥ t∗ν∗;α/2
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Independent t-Test for µ1 − µ2 (Unknown σ1, σ2)

Proposition

Population: Two Normal Populations with unknown σ1, σ2

Realized Samples:
x := (x1, x2, · · · , xn1) with mean x, std dev s1

y := (y1, y2, · · · , yn2) with mean y, std dev s2

Samples x & y are independent of each other

Test Statistic Value:
W(x, y; δ0)

t =
(x− y)− δ0√

s2
1

n1
+

s2
2

n2

, ν∗ =


(

s2
1

n1
+

s2
2

n2

)2

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1


HYPOTHESIS TEST: P-VALUE DETERMINATION:

H0 : µ1 − µ2 = δ0 vs. HA : µ1 − µ2 > δ0 P-value = 1− Φt(t; ν∗)

H0 : µ1 − µ2 = δ0 vs. HA : µ1 − µ2 < δ0 P-value = Φt(t; ν∗)

H0 : µ1 − µ2 = δ0 vs. HA : µ1 − µ2 6= δ0 P-value = 2 · [1− Φt(|t|; ν∗)]

DECISION RULE: If P-value ≤ α then reject H0 in favor of HA

If P-value > α then accept H0 (i.e. fail to reject H0)
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t-CI for Normal Pop. Difference µ1 − µ2 (Motivation)
Let X := (X1, . . . ,Xn1) be a random sample from a Normal(µ1, σ

2
1) population.

Let Y := (Y1, . . . ,Yn2) be a random sample from a Normal(µ2, σ
2
2) population.

Moreover, suppose random samples X & Y are independent of each other.
Then, construct the 100(1− α)% CI for parameter difference µ1 − µ2:

1 Produce suitable pivot: Q(X,Y;µ1, µ2) := [(X− Y)− (µ1− µ2)]/
√

S2
1

n1
+

S2
2

n2

2 Then the pivot is approximately an t distribution: Q(X,Y;µ1, µ2)
approx∼ tν∗

3 Find constants a < b such that P(a < Q(X,Y;µ1, µ2) < b) = 1− α

Since tν pdf is symmetric,

{
a = t∗ν∗;1−α/2 = −t∗ν∗;α/2
b = t∗ν∗;α/2

4 Manipulate the inequalities to isolate parameter difference µ1 − µ2:

(X − Y)− t∗ν∗;α/2 ·
√

S2
1

n1
+

S2
2

n2
< µ1 − µ2 < (X − Y) + t∗ν∗;α/2 ·

√
S2

1
n1

+
S2

2
n2

5 Take independent samples x := (x1, · · · , xn1) & y := (y1, · · · , yn2).
6 Replace point estimators X,Y, S1, S2 with x, y, s1, s2 from the samples:

(x− y)− t∗ν∗;α/2 ·
√

s2
1

n1
+

s2
2

n2
< µ1 − µ2 < (x− y) + t∗ν∗;α/2 ·

√
s2

1
n1

+
s2

2
n2
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Independent t-CI for µ1 − µ2 (Unknown σ1, σ2)

Proposition
Given two normal populations with means µ1 and µ2.
Let x1, x2, · · · , xn1 be a sample taken from 1st population.
Let y1, y2, · · · , yn2 be a sample taken from 2nd population.
Moreover, suppose samples x & y are independent of each other.

Then the 100(1− α)% independent t-CI for µ1 − µ2 is(
(x− y)− t∗ν∗;α/2 ·

√
s2

1
n1

+
s2

2
n2
, (x− y) + t∗ν∗;α/2 ·

√
s2

1
n1

+
s2

2
n2

)
—- OR WRITTEN MORE COMPACTLY —-

(x− y)± t∗ν∗;α/2 ·

√
s2

1

n1
+

s2
2

n2

where ν∗ =


(

s2
1

n1
+

s2
2

n2

)2

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1
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PART III

PART III:

Pooled t-Tests & Pooled t-CI’s
(Unknown Population Variances σ2

1 = σ2
2)
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A Pooled Statistic Related to the t Distribution

For the case when the two normal populations have equal variance, there is a
better statistic to use in t-tests & t-CI’s called a pooled statistic:

Theorem
Let X := (X1, . . . ,Xn1) be a random sample from a Normal(µ1, σ

2) population.
Let Y := (Y1, . . . ,Yn2) be a random sample from a Normal(µ2, σ

2) population.
Moreover, suppose random samples X & Y are independent of each other.
Then:

(X − Y)− (µ1 − µ2)√
S2

pool ·
(

1
n1

+
1
n2

) ∼ tn1+n2−2 where S2
pool :=

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

PROOF: Beyond scope of course. Take Mathematical Statistics.

S2
pool is the weighted average of the two sample variances. This means the

sample with more data provides more information about the population
variance σ2 and, hence, its sample variance has more weight in the average.
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Pooled t-Test for µ1 − µ2 (Unknown σ1 = σ2)

Proposition

Population: Two Normal Populations with unknown σ1 = σ2

Realized Samples:
x := (x1, x2, · · · , xn1) with mean x, std dev s1

y := (y1, y2, · · · , yn2) with mean y, std dev s2

Samples x & y are independent of each other

Pooled Sample Variance s2
pool =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
Test Statistic Value:

W(x, y; δ0)
tpool =

(x− y)− δ0√
s2

pool ·
(

1
n1

+ 1
n2

) , νpool = n1 + n2 − 2

HYPOTHESIS TEST: REJECTION REGION AT LVL α :

H0 : µ1 − µ2 = δ0 vs. HA : µ1 − µ2 > δ0 tpool ≥ t∗νpool;α

H0 : µ1 − µ2 = δ0 vs. HA : µ1 − µ2 < δ0 tpool ≤ t∗νpool;1−α
H0 : µ1 − µ2 = δ0 vs. HA : µ1 − µ2 6= δ0 tpool ≤ t∗νpool;1−α/2 or tpool ≥ t∗νpool;α/2
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Pooled t-Test for µ1 − µ2 (Unknown σ1 = σ2)

Proposition

Population: Two Normal Populations with unknown σ1 = σ2

Realized Samples:
x := (x1, x2, · · · , xn1) with mean x, std dev s1

y := (y1, y2, · · · , yn2) with mean y, std dev s2

Samples x & y are independent of each other

Pooled Sample Variance s2
pool =

(n1−1)s2
1+(n2−1)s2

2
n1+n2−2

Test Statistic Value:

W(x, y; δ0)
tpool =

(x− y)− δ0√
s2

pool ·
(

1
n1

+ 1
n2

) , νpool = n1 + n2 − 2

HYPOTHESIS TEST: P-VALUE DETERMINATION:
H0 : µ1 − µ2 = δ0 vs. HA : µ1 − µ2 > δ0 P-value = 1− Φt(tpool; νpool)

H0 : µ1 − µ2 = δ0 vs. HA : µ1 − µ2 < δ0 P-value = Φt(tpool; νpool)

H0 : µ1 − µ2 = δ0 vs. HA : µ1 − µ2 6= δ0 P-value = 2 · [1− Φt(|tpool|; νpool)]

DECISION RULE: If P-value ≤ α then reject H0 in favor of HA

If P-value > α then accept H0 (i.e. fail to reject H0)
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Pooled t-CI for µ1 − µ2 (Unknown σ1 = σ2)

Proposition
Given two normal populations with means µ1 and µ2 and unknown σ2

1 = σ2
2 .

Let x1, x2, · · · , xn1 be a sample taken from the 1st population.
Let y1, y2, · · · , yn2 be a sample taken from the 2nd population.
Moreover, suppose the samples x & y are independent of each other.

Then the 100(1− α)% pooled t-CI for µ1 − µ2 is(
(x− y)− t∗νpool;α/2 ·

√
s2

pool ·
(

1
n1

+ 1
n2

)
, (x− y) + t∗νpool;α/2 ·

√
s2

pool ·
(

1
n1

+ 1
n2

) )
—- OR WRITTEN MORE COMPACTLY —-

(x− y)± t∗νpool;α/2 ·
√

s2
pool ·

(
1
n1

+ 1
n2

)
where s2

pool =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
and νpool = n1 + n2 − 2
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Independent t-tests/CI’s vs. Pooled t-tests/CI’s

While a pooled t-test & t-CI bear higher power & narrower width respectively
compared to the corresponding independent t-test & t-CI, they are not robust
to violations of equality of population variances.

This lack of robustness in pooled t-tests & pooled t-CI’s is reflected by the
severe errors that occur when the two population variances differ by even a
small amount.

Therefore, when unsure if two given normal populations truly have identical
variances (and most often they don’t), it is recommended to play it safe and
use independent t-tests & t-CI’s.
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Textbook Logistics for Section 9.2

CONCEPT TEXTBOOK
NOTATION

SLIDES/OUTLINE
NOTATION

Probability of Event A ⊆ Ω P(A) P(A)
Expected Value of rv X E(X) E[X]

Variance of rv X V(X) V[X]

Alternative Hypothesis Ha HA

Sample Sizes m, n n1, n2

Pooled t-Test Stat Value t tpool

t-Cutoffs tα,ν , tα/2,ν t∗ν;α, t∗ν;α/2

Hypothesized Mean Difference ∆0 δ0

Ignore “Type II Error Probabilities” section. (pg 340-341)
Turns out computing the power of a 2-sample t-test is complicated.

Ignore any mention of one-sided CI’s.
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Fin

Fin.
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