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PART I

PART I:

Snedecor’s F Distribution
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George Waddel Snedecor (1881-1974)

Snedecor founded the first statistics department at Iowa State University.
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Snedecor’s F Distribution

Definition

Notation F ∼ Fν1,ν2

Parameters
ν1 ≡ # “Top” dof’s (ν1 = 1, 2, 3, · · · )
ν2 ≡ # “Bottom” dof’s (ν2 = 1, 2, 3, · · · )

Support Supp(F) = (0,∞) if ν1 = 1; Supp(F) = [0,∞) otherwise

pdf fF(x; ν1, ν2) := (ν1/ν2)
ν1/2

B(ν1/2,ν2/2) · x
(ν1/2)−1

(
1 + ν1

ν2
x
)−(ν1+ν2)/2

cdf ΦF(x; ν1, ν2) = (ν1/ν2)
ν1/2

B(ν1/2,ν2/2)

∫ x

0
ξ(ν1/2)−1

(
1 +

ν1

ν2
ξ

)−(ν1+ν2)/2

dξ

Mean
E[F] = +∞, for ν2 = 1, 2
E[F] = ν2

ν2−2 , for ν2 > 2

Variance
V[F] = +∞, for ν2 = 1, 2, 3, 4

V[F] =
2ν2

2 (ν1+ν2−2)
ν1(ν2−2)2(ν2−4) , for ν2 > 4

Model(s) (Used exclusively for Statistical Inference)

B(·, ·) ≡ Beta Function ξ is the lowercase Greek letter “xi”
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Snedecor’s F Distribution (Properties)

Snedecor named it the F distribution in honor of statistician Sir Ronald Fisher.

Proposition
Properties of F distributions:

The Fν1,ν2 pdf curve is positively skewed.

Let random variable X ∼ Fν1,ν2 . Then
1
X
∼ Fν2,ν1

Let random variable X ∼ tn. Then X2 ∼ F1,n

Let X1,X2 be independent rv’s
such that X1 ∼ χ2

ν1
& X2 ∼ χ2

ν2
.

Then
X1/ν1

X2/ν2
∼ Fν1,ν2

Let X1,X2 be independent rv’s
s.t. X1 ∼ Gamma(α1, β1)
and X2 ∼ Gamma(α2, β2).

Then
α2β1X1

α1β2X2
∼ F2α1,2α2

PROOF: Beyond scope of course. Take Mathematical Statistics.
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Plot of F Distributions (ν1 grows & ν2 = 2 is fixed)
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Plot of F Distributions (ν1 grows & ν2 = 10 is fixed)
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Plot of F Distributions (ν1 = 2 is fixed & ν2 grows)
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Plot of F Distributions (ν1 = 10 is fixed & ν2 grows)
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Plot of F Distributions (ν1 & ν2 both grow in unison)
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F-Cutoffs (AKA F Critical Values) (Definition)

A key component to some CI’s & hypothesis tests is the F-cutoff:

Definition
f ∗ν1,ν2;α is called a F-cutoff of the Fν1,ν2 distribution such that
its upper-tail probability is exactly its subscript value α: (Here, F ∼ Fν1,ν2 )

P(F > f ∗ν1,ν2;α) = α

NOTE: Do not confuse F-cutoff f ∗ν1,ν2;α with F percentile fν1,ν2;α:

P(F ≤ fν1,ν2;α) = α

Another name for F-cutoff is F critical value.
Finally, notice that f ∗ν1,ν2;α is always positive.
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F-Cutoffs (Example Plot)
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F-Cutoffs (Key Property)

Proposition
Lower-tail F-cutoffs can be determined from appropriate upper-tail F-cutoffs:

f ∗ν1,ν2;1−α =
1

f ∗ν2,ν1;α

IMPORTANT: Notice that the order of the dof’s switch!!

PROOF: Beyond scope of course. Take Mathematical Statistics.
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F-Cutoffs Table (α = 0.1)

Use this particular table for:
One-sided α = 0.1 F-tests
Two-sided α = 0.2 F-tests
80% F-CI’s
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F-Cutoffs Table (α = 0.05)

Use this particular table for:
One-sided α = 0.05 F-tests
Two-sided α = 0.1 F-tests
90% F-CI’s
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F-Cutoffs Table (α = 0.025)

Use this particular table for:
One-sided α = 0.025 F-tests
Two-sided α = 0.05 F-tests
95% F-CI’s
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F-Cutoffs Table (α = 0.01)

Use this particular table for:
One-sided α = 0.01 F-tests
Two-sided α = 0.02 F-tests
98% F-CI’s
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F-Cutoffs Table (α = 0.005)

Use this particular table for:
One-sided α = 0.005 F-tests
Two-sided α = 0.01 F-tests
99% F-CI’s
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PART II

PART II:

F-Tests & F-CI’s for Comparing Two Normal Population Variances
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Comparing Two Population Variances (Motivation)
In most (but not all) situations, a higher variance is not desired:

Suppose two identical (i.e. same brand & model) DC power supplies
convert incoming AC electric current to DC current with the same mean
voltage, but their variances in the voltage vastly differ. The power supply
bearing the higher variance would be considered less reliable than the
other, possibly even defective for an extremely higher variance.
Employees who do all their online training at work tend to have similar
average weekly study durations yet smaller std dev’s than those who do
most of their online training at home. The smaller variability in the first
group of employees allows managers more efficiency in planning and
scheduling tasks/projects.
Two similar investment funds with the same average return rate but
differing variances would communicate to the potential investor that the
higher-variation fund is higher risk.

This is not surprising at all – we’ve encountered similar patterns before:
We prefer point estimators with smaller variances (e.g. UMVUE’s.)
Smaller variances lead to narrower CI’s at the same α-level.
Smaller variances lead to more powerful hypothesis tests with same α.
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A Statistic related to the F Distribution

Theorem
Let X := (X1, . . . ,Xm) be a random sample from a Normal(µ1, σ

2
1) population.

Let Y := (Y1, . . . ,Yn) be a random sample from a Normal(µ2, σ
2
2) population.

Moreover, suppose random samples X & Y are independent of each other.

Then the following statistic has an F distribution:

S2
1/σ

2
1

S2
2/σ

2
2
∼ Fm−1,n−1

PROOF: Beyond scope of course. Take Mathematical Statistics.
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F-Test for Comparing Normal Pop. Variances
(Cutoff Version)

Proposition

Population: Two Normal Populations with unknown σ+, σ−

Realized Samples:
x := (x1, x2, · · · , xn+) with mean x, std dev s+
y := (y1, y2, · · · , yn−) with mean y, std dev s−
Samples x & y are independent with s+ ≥ s−

Test Statistic Values:
W+(x, y) & W−(x, y)

f+ =
s2
+

s2
−
, f− =

s2
−

s2
+

,
ν+ = n+ − 1
ν− = n− − 1

HYPOTHESIS TEST: REJECTION REGION @ SIGNIF. LVL α :

H0 : σ2
+ = σ2

− vs. HA : σ2
+ > σ2

− f+ ≥ f ∗ν+,ν−;α

H0 : σ2
+ = σ2

− vs. HA : σ2
+ 6= σ2

− f− ≤ f ∗ν+,ν−;1−α/2 or f+ ≥ f ∗ν+,ν−;α/2
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F-Test for Comparing Normal Pop. Variances
(P-value Version)

Proposition

Population: Two Normal Populations with unknown σ+, σ−

Realized Samples:
x := (x1, x2, · · · , xn+) with mean x, std dev s+
y := (y1, y2, · · · , yn−) with mean y, std dev s−
Samples x & y are independent with s+ ≥ s−

Test Statistic Values:
W+(x, y) & W−(x, y)

f+ =
s2
+

s2
−
, f− =

s2
−

s2
+

,
ν+ = n+ − 1
ν− = n− − 1

HYPOTHESIS TEST: P-VALUE DETERMINATION:
H0 : σ2

+ = σ2
− vs. HA : σ2

+ > σ2
− 1− ΦF(f+; ν+, ν−)

H0 : σ2
+ = σ2

− vs. HA : σ2
+ 6= σ2

− ΦF(f−; ν−, ν+) + [1− ΦF(f+; ν+, ν−)]
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F-CI for Normal Pop. Ratio σ2
+/σ

2
− (Motivation)

Let X := (X1, . . . ,Xn+) be a random sample from a Normal(µ+, σ
2
+) population.

Let Y := (Y1, . . . ,Yn−) be a random sample from a Normal(µ−, σ
2
−) population.

X & Y are independent with s2
+ ≥ s2

−, ν+ = n+ − 1 & ν− = n− − 1.
Then, construct the 100(1− α)% CI for parameter ratio σ2

+/σ
2
−:

1 Produce a suitable pivot: Let Q(X,Y;σ2
+, σ

2
−) = (S2

+/σ
2
+)/(S2

−/σ
2
−)

2 Then the pivot is an F distribution: Q(X,Y;σ2
+, σ

2
−) ∼ Fν+,ν−

3 Find constants a < b such that P(a < Q(X,Y;σ2
+, σ

2
−) < b) = 1− α

Since Fν+,ν− pdf is skewed,

{
a = f ∗ν+,ν−;1−α/2 = 1/f ∗ν−,ν+;α/2
b = f ∗ν+,ν−;α/2

4 Manipulate the inequalities to isolate parameter ratio σ2
+/σ

2
−:

1
f ∗ν−,ν+;α/2

<
S2
+/σ

2
+

S2
−/σ

2
−
< f ∗ν+,ν−;α/2 =⇒

S2
+/S2

−
f ∗ν+,ν−;α/2

<
σ2
+

σ2
−
<

f ∗ν−,ν+;α/2

S2
−/S2

+

5 Take independent samples x := (x1, · · · , xn+) & y := (y1, · · · , yn−).
6 Replace point estimators S+, S− with s+, s− computed from the samples:

s2
+/s2

−
f ∗ν+,ν−;α/2

<
σ2
+

σ2
−
<

f ∗ν−,ν+;α/2

s2
−/s2

+
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F-CI’s for σ2
+/σ

2
− and σ+/σ−

Proposition
Given two normal populations with unknown variances σ2

+, σ
2
−.

Let x1, x2, · · · , xn+ be a sample taken from 1st population with variance s2
+.

Let y1, y2, · · · , yn− be a sample taken from 2nd population with variance s2
−.

Moreover, the two samples are independent of each other with s2
+ ≥ s2

−.

Then the 100(1− α)% F-CI for σ2
+/σ

2
− is(

f+
f ∗ν+,ν−;α/2

,
f ∗ν−,ν+;α/2

f−

)
=

(
s2
+/s2

−
f ∗ν+,ν−;α/2

,
f ∗ν−,ν+;α/2

s2
−/s2

+

)

Moreover, the 100(1− α)% F-CI for σ+/σ− is√ f+
f ∗ν+,ν−;α/2

,

√
f ∗ν−,ν+;α/2

f−

 =

(√
s2
+/s2

−
f ∗ν+,ν−;α/2

,

√
f ∗ν−,ν+;α/2

s2
−/s2

+

)

where ν+ = n+ − 1 and ν− = n− − 1
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Textbook Logistics for Section 9.5

CONCEPT TEXTBOOK
NOTATION

SLIDES/OUTLINE
NOTATION

Probability of Event A ⊆ Ω P(A) P(A)
Expected Value of rv X E(X) E[X]

Variance of rv X V(X) V[X]

Alternative Hypothesis Ha HA

F-Cutoffs Fα,ν1,ν2 f ∗ν1,ν2;α

F-Test Stat Value(s) f f−, f+
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Fin

Fin.
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