MATH 1300-201: EXAM 2 INFO/LOGISTICS/ADVICE

• <u>INFO:</u>

WHEN:	Friday $(07/17)$ at 8:00am	DURATION:	$110~{\rm mins}$	
PROBLEM COUNT:	Six	BONUS COUNT:	Two	

– TOPICS CANDIDATE FOR THE EXAM:

("PIRNOT" means the textbook, 5^{th} ed.)

- * PIRNOT 10.1: Hamilton's Method, Alabama Paradox
- * PIRNOT 10.3: New States Paradox, Jefferson's Mtd, Adams' Mtd, Webster's Mtd
- * PIRNOT 11.1: Plurality Mtd, Borda Count Mtd, Pairwise Comparison Mtd
- * PIRNOT 11.2: Majority Criterion, Condorcet Criterion, Independence-of-Irrelevant-Alternatives (IIA) Crit.
- * PIRNOT 11.3: Weighted Voting Systems, Coalitions, Banzhaf Power Index
- * REMARK: Do not Memorize Formulas A Formula Sheet will be provided (next two pages)
- TOPICS CANDIDATE FOR BONUS QUESTIONS:
 - * PIRNOT 11.1: Plurality-with-Elimination Method
 - * ?????
 - * REMARK: Maximum Bonus Points Possible = 30
- <u>TOPICS NOT COVERED AT ALL:</u>
 - * PIRNOT 10.1: Measuring Fairness & Average Constituency (EXAMPLES 2-4, pgs 521-522)
 - * PIRNOT 10.2: Huntington-Hill Method (entire section)
 - * PIRNOT 10.3: Population Paradox (EXAMPLE 3, pgs 537-538), Quota Rule
 - * PIRNOT 10.4: Fair Division (entire section)
 - * PIRNOT 11.2: Monotonicity Criterion (EXAMPLE 5, pgs 577-579)
 - * PIRNOT 11.4: The Shapley-Shubik Index (entire section)

• LOGISTICS:

- All you need to bring are pencil(s), eraser(s), calculators(s) & your Raidercard.
- Clear your desk of everything except pencil(s), eraser(s), calculator(s).
- Backpacks are to placed at the front of the classroom.
- Formula Sheet (next two pages) will be provided.
- Books, notes, notecards NOT PERMITTED.
- Mobile devices (phones, tablets, PC's, music, headphones, ...) are to be shut off and put away.
- Tissues will be furnished for allergies, not for sobbing.
- When you turn in your exam, be prepared to show me your Raidercard if I don't recognize you.
- If you ask to use the restroom during the exam, either hold it or turn in your exam for grading.

• ADVICE:

- Use the restroom before the exam, if needed.
- Do not be late set your wake-up alarms (consider using your cellphone as a backup alarm).
- Review past homework, and perhaps even work some similar problems in the textbook.
- Review the slides.
- Know how the use all formulas on the provided Formula Sheet (next two pages)
- If you need more review, show up to extended office hours on Thursday (07/16) in MATH 003A.
- SHOW APPROPRIATE WORK! Attempt bonus questions.

MATH 1300: EXAM 2 FORMULA SHEET

NOTATION FOR ROUNDING:

Always Round Down: |3| = 3 |3.1| = 3 |3.5| = 3 |3.9| = 3

Always Round Up: [3] = 3 [3.1] = 4 [3.5] = 4 [3.9] = 4

Round to Nearest Integer: $[\![3]\!] = 3$ $[\![3.1]\!] = 3$ $[\![3.5]\!] = 4$ $[\![3.9]\!] = 4$

PIRNOT 10.1:

 $N \equiv \#$ of states, $M \equiv \#$ of seats, $P_k \equiv$ Population of the k^{th} state, $P \equiv$ Total Population, $D \equiv$ Standard Divisor $Q_k \equiv$ Quota of the k^{th} state, $A_k \equiv$ Apportionment of the k^{th} state

 $D = \frac{P}{M}$

 $Q_k = \left\lfloor \frac{P_k}{D} \right\rfloor$ $T = \sum_{k=1}^{N} Q_k$

 $A_k = Q_k + (surplus)$

- <u>Hamilton's Method:</u>
 - STEP 1: Compute standard divisor
 - STEP 2: Compute quotas, always rounding down
 - STEP 3: Compute the **total quota**

51Ei 5. Compute the total quota

- STEP 4: If T < M, assign each of the (M T) surplus seats (one at a time) to the states having **quotas** with the **largest fractional parts**
- <u>Alabama Paradox:</u> Increasing the total seats may **decrease** a state's apportionment.
- <u>New States Paradox</u>: The addition of a new state with its fair share of seats can affect apportionment of other states.

PIRNOT 10.3:

• Jefferson's Method:

STEP 1:	Compute standard divisor	$D = \frac{P}{M}$		
STEP 2:	Compute divisor	$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right]$		
STEP 3:	Compute quotas, rounding down	$Q_k = \left\lfloor \frac{P_k}{D^*} \right\rfloor$		
STEP 4:	The apportionment is precisely the quota	$A_k = Q_k$		
Adams' Method:				
STEP 1:	Compute standard divisor	$D = \frac{P}{M}$		
STEP 2:	Compute divisor	$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right]$		
STEP 3:	Compute quotas, rounding up	$Q_k = \left\lceil \frac{P_k}{D^*} \right\rceil$		
STEP 4:	The apportionment is precisely the quota	$A_k = Q_k$		
Webster's Method:				
STEP 1:	Compute standard divisor	$D = \frac{P}{M}$		
STEP 2:	Compute divisor	$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right]$		
STEP 3:	Compute quotas, rounding as usual	$Q_k = \begin{bmatrix} \tilde{P}_k \\ D^* \end{bmatrix}$		
STEP 4:	The apportionment is precisely the quota	$A_k = Q_k$		

02014Josh Engwer

PIRNOT 11.1:

• Plurality Met	hod:			
SETUP: PROCESS:	Si	ingle-Winner Election has k candidates ach voter votes for one candidate		
WINNER:	С	Candidate receiving the most votes		
• Borda Count	Meth	<u>od:</u>		
SETUP: PROCESS:	(1)	Single-Winner Election has k candidates Each voter ranks all candidates as follows: The 1 st choice receives k points The 2 nd choice receives $(k - 1)$ points The 3 rd choice receives $(k - 2)$ points		
		:		
WINNER:	(2)	The last choice receives 1 point For each candidate, compute the total sum of points Candidate receiving the most total points		
• Plurality-with-Elimination Method:				
SETUP:		Single-Winner Election has k candidates		
PROCESS:	(0)	Compute total votes & $\#$ votes needed for a majority $= \left \frac{\text{(total votes)}}{2} \right $		
	(1)	If no candidate receives a majority of votes,		
	(2)	Conduct a new election round with updated ballot		
	(-)	Assume voters <u>don't</u> change their preferences each round		
WINNER:	(3)	Repeat (1)-(2) until a candidate receives a majority Candidate receiving a majority of votes		
• Pairwise Comparison Method:				
SETUP:	1	Single-Winner Election has k candidates		
PROCESS:	(1)	Voters rank all candidates		
	(2)	Pit candidates A and B "head-to-head" Count how many voters prefer A to B		
		Count how many voters prefer B to A		
		If A and B are tied, then each receives $1/2$ point		
		and the less preferred candidate receives 0 points		
WINNER	(3)	Repeat Step (2) for each pair of candidates		
WINNER:		Candidate receiving the most points		

PIRNOT 11.2:

• Majority Criterion:

If a majority of the voters rank a candidate as their 1^{st} choice, then that candidate should win the election.

• <u>Condorcet Criterion:</u>

If candidate X can defeat each of the other candidates head-to-head, then candidate X is the winner of the election.

• <u>IIA Criterion:</u>

If candidate X wins, some nonwinner(s) are removed from ballot, and a recount is done, then candidate X still wins.

PIRNOT 11.3:

• A weighted voting system with N voters is described by the following:

 $[(\text{quota}) : (\text{weight of voter } 1), (\text{weight of voter } 2), \dots, (\text{weight of voter } N)] \equiv [Q : w_1, w_2, \dots, w_N]$

The **quota** Q is the # of votes needed in this system to get a **motion** or **resolution** (i.e. vote "Yes" or "No") passed. The **weights** w_1, w_2, \ldots, w_N are the amount of votes controlled by voter 1, voter 2, ..., voter N

• A **coalition** is a group of voters who vote the same way.

A coalition's weight W is the sum of the weights of all voters in the coalition: $W = \sum_{k=1}^{N} w_k$

A coalition is called a **winning coalition** if the coalition's weight is greater than or equal to the quota: $W \ge Q$

Voter k in a coalition is a **dictator** if voter k has total control: $w_k \ge Q$

Voter k in a winning coalition is **critical** if the coalition needs voter k to win: $W - w_k < Q$

• (Banzhaf Power for Voter k) = $\frac{\# \text{ times voter } k \text{ is critical in winning coalitions}}{\text{Total } \# \text{ times voters are critical in winning coalitions}}$: $B_k = \frac{C_k}{T}$, where $T = \sum_{k=1}^N C_k$

 $[\]textcircled{O}2014$ Josh Engwer