EX 13.3.1: One fair 3-sided die \& one fair 4-sided die are both rolled.
(a) Determine the sample space for the experiment.

The sample space is the set of all possible outcomes for the experiment:

$$
S=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4)\}
$$

(b) Find P (die 1 shows 3), $\quad P($ die 2 shows 4$), \quad P($ die 1 shows 3 and die 2 shows 4$)$

Let events $\begin{aligned} & E_{1} \equiv \text { Die } 1 \text { shows } 3=\{(3,1),(3,2),(3,3),(3,4)\} \\ & \\ & \left.E_{2} \equiv \text { Die } 2 \text { shows } 4=c(1,4),(2,4),(3,4)\right\}\end{aligned}$
Then event $E_{1} \cap E_{2} \equiv$ Die 1 shows 3 and Die 2 shows $4=\left(\right.$ All outcomes common to both E_{1} and $\left.E_{2}\right)=\{(3,4)\}$

$$
\begin{aligned}
& \Longrightarrow P\left(E_{1}\right)=\frac{m\left(E_{1}\right)}{m(S)}=\frac{\left(\# \text { outcomes in event } E_{1}\right)}{(\# \text { outcomes in sample space } S)}=\frac{4}{12}=\frac{1}{3} \\
& \Longrightarrow P\left(E_{2}\right)=\frac{m\left(E_{2}\right)}{m(S)}=\frac{\left(\# \text { outcomes in event } E_{2}\right)}{(\# \text { outcomes in sample space } S)}=\frac{3}{12}=\frac{1}{4} \\
& \Longrightarrow P\left(E_{1} \cap E_{2}\right)=\frac{m\left(E_{1} \cap E_{2}\right)}{m(S)}=\frac{\left(\# \text { outcomes in event } E_{1} \cap E_{2}\right)}{(\# \text { outcomes in sample space } S)}=\frac{1}{12}
\end{aligned}
$$

(c) Find the probability that die 1 shows 3 given die 2 shows 4 .

$$
P\left(E_{1} \text { given } E_{2}\right)=P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)}=\frac{1 / 12}{1 / 4}=\frac{1}{12} \div \frac{1}{4}=\frac{1}{12} \times \frac{4}{1}=\frac{4}{12}=\frac{1}{3}
$$

(d) Find the probability that die 2 shows 4 given die 1 shows 3 .

$$
P\left(E_{2} \text { given } E_{1}\right)=P\left(E_{2} \mid E_{1}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{1}\right)}=\frac{1 / 12}{1 / 3}=\frac{1}{12} \div \frac{1}{3}=\frac{1}{12} \times \frac{3}{1}=\frac{3}{12}=\frac{1}{4}
$$

(e) Are the events "die 1 shows 3 " \& "die 2 shows 4 " independent?

There are three ways to answer this:

$$
\begin{aligned}
& 1^{s t} \text { way: } P\left(E_{1} \mid E_{2}\right)=\frac{1}{3} \text { and } P\left(E_{1}\right)=\frac{1}{3} \Longrightarrow P\left(E_{1} \mid E_{2}\right)=P\left(E_{1}\right) \Longrightarrow \text { Events } E_{1} \text { and } E_{2} \text { are Independent } \\
& 2^{\text {nd }} \text { way: } \quad P\left(E_{2} \mid E_{1}\right)=\frac{1}{4} \text { and } P\left(E_{2}\right)=\frac{1}{4} \Longrightarrow P\left(E_{2} \mid E_{1}\right)=P\left(E_{2}\right) \Longrightarrow \text { Events } E_{1} \text { and } E_{2} \text { are Independent }
\end{aligned}
$$

$$
3^{\text {rd }} \text { way: } \quad P\left(E_{1}\right) P\left(E_{2}\right)=\frac{1}{3} \times \frac{1}{4}=\frac{1}{12}=P\left(E_{1} \cap E_{2}\right) \Longrightarrow \text { Events } E_{1} \text { and } E_{2} \text { are Independent }
$$

