LOGIC: TRUTH TABLES, LOGICAL EQUIV, DEMORGAN'S LAWS [PIRNOT 3.2]

<u>EX 3.2.3</u> Using truth tables, determine whether these two statements are logically equivalent: $P \land (\sim Q), \sim (\sim P \lor Q)$

Construct a single truth table containing the variables, intermediate expressions, and the two desired expressions:

P	Q	$\sim Q$	$P \wedge (\sim Q)$	$\sim P$	$\sim P \vee Q$	$\sim (\sim P \lor Q)$
Т	Т	F	F	F	Т	F
Т	F	Т	Т	F	F	Т
F	Т	F	F	Т	Т	F
F	F	Т	F	Т	Т	F

<u>NOTE</u>: Having and filling out the columns for the intermediate expressions $[\sim Q, \sim P, \sim P \lor Q]$ are **absolutely critical** for **painlessly** finding the two desired expressions $[P \land (\sim Q), \sim (\sim P \lor Q)]$.

Since the columns for $P \land (\sim Q)$ and $\sim (\sim P \lor Q)$ (in **bold**) are **identical**, these two expressions are logically equivalent One can indicate the two expressions are logically equivalent symbolically as follows:

$$P \land (\sim Q) \iff \sim (\sim P \lor Q)$$

<u>EX 3.2.6:</u> Using DeMorgan's Laws, negate the following English statement (in English): "Cats meow and dogs bark."

Let logic statements $P \equiv$ "Cats meow", $Q \equiv$ "Dogs bark"

Then translate given English statement to a symbolic logic statement:

"Cats meaw and dogs bark" $\equiv P \wedge Q$

Now apply appropriate DeMorgan's Law(s) on the negation of $P \wedge Q$:

 $\sim (P \land Q) \iff (\sim P) \lor (\sim Q)$

Finally, translate the simplified symbolic logic statement to English:

 $(\sim P) \lor (\sim Q) \equiv$ "Cats do not meaw or dogs do not bark."

NOTE:	The symbol \equiv	means "represents"	(and is not a logical connective!)
NOTE:	The symbol \iff	means "is logically equivalent to"	(and is not a logical connective!)