LOGIC: TRUTH TABLES, LOGICAL EQUIV, DEMORGAN'S LAWS [PIRNOT 3.2]

<u>EX 3.2.1</u>: Construct a truth table for the logic statement:

 $\sim (P \land Q) \land (\sim P \lor Q)$

<u>EX 3.2.2</u> Construct a truth table for the logic statement:

 $\sim (\sim P \lor R) \land (\sim R \lor Q)$

<u>EX 3.2.3</u> Using truth tables, determine whether these two statements are logically equivalent: $P \land (\sim Q), \sim (\sim P \lor Q)$

 $\underline{\mathbf{EX \ 3.2.4:}} \left| \begin{array}{c} \text{Using truth tables, determine whether these two statements are logically equivalent:} \\ \sim (P \lor Q), \quad (\sim P) \land Q \end{array} \right|$

<u>EX 3.2.5</u> Using DeMorgan's Laws, completely simplify the following statement: $\sim [(\sim P) \land (Q \lor (\sim R))]$

<u>EX 3.2.6</u> Using DeMorgan's Laws, negate the following English statement (in English): "Cats meow and dogs bark."