If James can afford mortgage payments of $\$ 300 /$ month for 30 years, what is the most expensive house price that he can afford now?

Assume an annual interest rate of 6%.

EX 8.5.2:

A borrower has taken out a 30-year mortgage for $\$ 120,000$ at a 6% annual interest rate.
(a) Find the monthly payment using the table on the right \rightarrow

Monthly Payment per \$1000	Number of Years for the Loan				
Annual Interest Rate	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$
4%	$\$ 29.53$	$\$ 22.58$	$\$ 10.12$	$\$ 6.06$	$\$ 4.77$
5%	$\$ 29.97$	$\$ 23.03$	$\$ 10.61$	$\$ 6.60$	$\$ 5.37$
6%	$\$ 30.42$	$\$ 23.49$	$\$ 11.10$	$\$ 7.16$	$\$ 6.00$
8%	$\$ 31.34$	$\$ 24.41$	$\$ 12.13$	$\$ 8.36$	$\$ 7.34$
10%	$\$ 32.27$	$\$ 25.36$	$\$ 13.22$	$\$ 9.65$	$\$ 8.78$
12%	$\$ 33.21$	$\$ 26.33$	$\$ 14.35$	$\$ 11.01$	$\$ 10.29$

(b) Complete the below amortization schedule for the first three mortgage payments.

For each entry, round to nearest penny. Show how you computed the Interest Paid for Month 1:

	Monthly Payment	Interest Paid	Paid on Principal	Remaining Balance
	(N/A)	(N/A)	(N/A)	$\$ 120,000$
Month 1				
Month 2				
Month 3				

