Hamilton's Apportionment Method Contemporary Math

Josh Engwer

TTU

13 July 2015

Josh Engwer (TTU)

Article I, Section 2 of the U.S. Constitution:

"Representatives and direct taxes shall be **apportioned** among the several states which may be included within the Union, according to their respective numbers."

Definition

Apportionment is the determination of the number of House of Representative **seats** for each **state**, provided each state's seat count is **proportional** to its population.

Apportionment (General Definition)

Realize that apportionment applies to situations other than seats of Congress.

Definition

(Apportionment)

Apportionment is the determination of the number of <u>identical</u> gifts for each recipient, provided some proportionality criterion is satisfied.

(GIFTS) are given to (RECIPIENTS) based on (PROPORTIONALITY CR).

GIFTS	RECIPIENTS	PROPORTIONALITY CRITERION
seats	states	(state) population
council seats	unions	(union) membership
teachers	campuses	(campus) enrollments
nurses	hospital shifts	avg # patients (per shift)
buses	bus routes	# of riders (per route)
2-hour sections	class subjects	student interest (in subject)
cookies	children	chore completion (per child)

We know that some **GIFTS** such as pizzas and drinks can **always** be divided among recipients according to **any** proportionality criterion **perfectly**.

However, most **GIFTS** are **indivisible**, meaning having a **fractional part** is **impractical**, **useless**, or **forbidden**:

- it's impractical to have a fraction of a bus
- it's useless to have a fraction of a seat
- it's forbidden to have a fraction of a 2-hour section

WEX 10-1-1: Apportion 13 seats to 3 states based on population. (see below)

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

WEX 10-1-1: Apportion 13 seats to 3 states based on population. (see below)

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

$$P = \sum_{k=1}^{3} P_k = P_1 + P_2 + P_3 = 124 + 97 + 109 = 330$$

Step 1: Compute the Total Population.

WEX 10-1-1: Apportion 13 seats to 3 states based on population. (see below)

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
FAIR SHARE:	124/330	97/330	109/330

$$P = \sum_{k=1}^{3} P_k = P_1 + P_2 + P_3 = 124 + 97 + 109 = 330$$

(State's Fair Share) = (State's Population)/(Total Population)

Step 1: Compute the **Total Population**. Step 2: Compute each state's **Fair Share**.

(

WEX 10-1-1: Apportion 13 seats to 3 states based on population. (see below)

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
FAIR SHARE:	37.58%	29.39%	33.03%

$$P = \sum_{k=1}^{3} P_k = P_1 + P_2 + P_3 = 124 + 97 + 109 = 330$$

(State's Fair Share) = (State's Population)/(Total Population)

Step 1: Compute the **Total Population**. Step 2: Compute each state's **Fair Share**.

(

WEX 10-1-1: Apportion 13 seats to 3 states based on population. (see below)

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
FAIR SHARE:	37.58%	29.39%	33.03%
APPORTIONMENT:	(0.3758)(13)	(0.2939)(13)	(0.3303)(13)

$$P = \sum_{k=1}^{3} P_k = P_1 + P_2 + P_3 = 124 + 97 + 109 = 330$$

(State's Fair Share) = (State's Population)/(Total Population)
(State's Apportionment) = (State's Fair Share) × (Number of Seats)

Step 1: Compute the **Total Population**. Step 2: Compute each state's **Fair Share**. Step 3: Compute each state's **Apportionment**.

Josh Engwer (TTU)

WEX 10-1-1: Apportion 13 seats to 3 states based on population. (see below)

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
FAIR SHARE:	37.58%	29.39%	33.03%
APPORTIONMENT:	4.8854	3.8207	4.2939

$$P = \sum_{k=1}^{3} P_k = P_1 + P_2 + P_3 = 124 + 97 + 109 = 330$$

(State's Fair Share) = (State's Population)/(Total Population)
(State's Apportionment) = (State's Fair Share) × (Number of Seats)

Step 1: Compute the **Total Population**. Step 2: Compute each state's **Fair Share**. Step 3: Compute each state's **Apportionment**.

Josh Engwer (TTU)

WEX 10-1-1: Apportion 13 seats to 3 states based on population. (see below)

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
FAIR SHARE:	37.58%	29.39%	33.03%
APPORTIONMENT:	4.8854	3.8207	4.2939

$$P = \sum_{k=1}^{3} P_k = P_1 + P_2 + P_3 = 124 + 97 + 109 = 330$$

(State's Fair Share) = (State's Population)/(Total Population)
(State's Apportionment) = (State's Fair Share) × (Number of Seats)

Therefore: State 1 gets 4.8854 seats State 2 gets 3.8207 seats State 3 gets 4.2939 seats

WEX 10-1-1: Apportion 13 seats to 3 states based on population. (see below)

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
FAIR SHARE:	37.58%	29.39%	33.03%
APPORTIONMENT:	4.8854	3.8207	4.2939

$$P = \sum_{k=1}^{3} P_k = P_1 + P_2 + P_3 = 124 + 97 + 109 = 330$$

(State's Fair Share) = (State's Population)/(Total Population)
State's Apportionment) = (State's Fair Share) × (Number of Seats)

Therefore: State 1 gets 4.8854 seats State 2 gets 3.8207 seats State 3 gets 4.2939 seats

But each state receives a fractional part of a seat!!!!

Josh Engwer (TTU)

Hamilton's Apportionment Method

Divisors & Quotas in the Context of Apportionment

(State's Fair Share) = (*State's Population*)/(*Total Population*)

Definition

Standard Divisor =
$$\frac{(Total Population)}{(Number of Seats)}$$

Characteristics of Useful Apportionment Methods

So, the previous example shows why apportionment methods are necessary.

But as the naïve method shown earlier indicates, a proper apportionment method requires the following:

- A "suitable" divisor
- A "suitable" rounding scheme

Ideally, an apportionment method should also satisfy the Quota Rule.

Proposition

(Quota Rule)

No state shall be apportioned seats beyond its **fair share quota**, rounded up or down.

It is often convenient to have mathematical notation for rounding numbers.

Always Round Down: $\lfloor 3 \rfloor = 3 \quad \lfloor 3.1 \rfloor = 3 \quad \lfloor 3.5 \rfloor = 3 \quad \lfloor 3.9 \rfloor = 3$

Always Round Up: [3] = 3 [3.1] = 4 [3.5] = 4 [3.9] = 4

Round to Nearest Integer: [3] = 3 [3.1] = 3 [3.5] = 4 [3.9] = 4

 $\lfloor x \rfloor$ is called the **floor function**.

 $\lceil x \rceil$ is called the **ceiling function**.

Hamilton's Method (of Apportionment)

Proposition

S

(Hamilton's Method)

Given *N* states *w*/ populations $P_1, P_2, P_3, ..., P_{N-1}, P_N$, and **total population** *P* Given *M* seats to be apportioned among the *N* states Determine the apportionment for each state, labeled $A_1, A_2, A_3, ..., A_{N-1}, A_N$

STEP 1: Compute standard divisor

$$D = \frac{P}{M}$$

STEP 2: Compute quotas, <u>always</u> rounding down $Q_k = \left| \frac{P_k}{D} \right|$

STEP 4: f T < M, assign each of the (M - T) surplus seats (one at a time) to the states having **quotas** with the **largest fractional parts**

$$T = \sum_{k=1}^{N} Q_k$$

 $A_k = Q_k + (surplus)$

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

$$N = 3, M = 13, P = \sum_{k=1}^{3} P_k = P_1 + P_2 + P_3 = 124 + 97 + 109 = 330$$

STEP 0: Collect given information.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

N = 3, M = 13, P = 330

STEP 0: Collect given information.

STATE:	State 1	State 2	State 3	
POPULATION:	124	97	109	

$$N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$

STEP 1: Compute standard divisor.

STATE:	State 1 State 2		State 3	
POPULATION:	124	97	109	
FAIR QUOTA:	124/D	97/D	109/D	

$$N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$

STEP 2: Compute quotas, rounding down:

 $Q_k = \left\lfloor rac{P_k}{D}
ight
floor$

STATE:	State 1 State 2		State 3
POPULATION:	124 97		109
FAIR QUOTA:	4.8849	3.8212	4.2939

N = 3, M = 13, P = 330, D = 25.3846

STEP 2: Compute quotas, rounding down:

 $Q_k = \left\lfloor \frac{P_k}{D} \right\rfloor$

STATE:	State 1 State 2 State		State 3
POPULATION:	124 97		109
FAIR QUOTA:	4.8849	3.8212	4.2939
QUOTA:	4	3	4

N = 3, M = 13, P = 330, D = 25.3846

STEP 2: Compute quotas, rounding down:

$$Q_k = \left\lfloor \frac{P_k}{D} \right\rfloor$$

STATE:	State 1	State 2	State 3
POPULATION:	124 97		109
FAIR QUOTA:	4.8849	3.8212	4.2939
QUOTA:	4	3	4

$$N = 3, M = 13, P = 330, D = 25.3846, T = \sum_{k=1}^{3} Q_k = 4 + 3 + 4 = 11$$

STEP 3: Compute the total quota.

STATE:	State 1	State 2	State 3	
POPULATION:	124 97		109	
FAIR QUOTA:	4.8849	3.8212	4.2939	
QUOTA:	4	3	4	

N = 3, M = 13, P = 330, D = 25.3846, T = 11

STEP 3: Compute the total quota.

STATE:	State 1	State 2	State 3	
POPULATION:	124	97	109	
FAIR QUOTA:	4.8849	3.8212	4.2939	
QUOTA:	4	3	4	
APPORTIONMENT:	4+1	3+1	4	

N = 3, M = 13, P = 330, D = 25.3846, T = 11

STEP 4: Since T < M, add a **unit surplus** to the (M - T) = 2 quotas with the **largest fractional parts**.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
FAIR QUOTA:	4.8849	3.8212	4.2939
QUOTA:	4	3	4
APPORTIONMENT:	5	4	4

N = 3, M = 13, P = 330, D = 25.3846, T = 11

STEP 4: Since T < M, add a unit surplus to the (M - T) = 2 quotas with the largest fractional parts.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
FAIR QUOTA:	4.8849	3.8212	4.2939
QUOTA:	4	3	4
APPORTIONMENT:	5	4	4

N = 3, M = 13, P = 330, D = 25.3846, T = 11

Therefore: State 1 gets 5 seats State 2 gets 4 seats State 3 gets 4 seats

Definition

(Average Constituency) The **average constituency** of a state is

$$C_{state} = \frac{P_{state}}{A_{state}} \equiv \frac{(Population \ of \ State)}{(Apportionment \ for \ State)}$$

The larger the avg constituency, the more poorly represented the state.

A "perfect" apportionment causes **equal** avg constituencies for **all** states. Such a situation means **each citizen's vote is equal to all other votes**. Unfortunately, such an idealistic apportionment is rarely possible.

Paradox (Definition)

Definition

(Paradox)

A **paradox** is a statement that contradicts itself and yet may be true.

WARNING: Do not confuse a paradox with irony, which is a literary device.

Paradoxes occur	in	various	fields	of	study:	
-----------------	----	---------	--------	----	--------	--

PARADOX	STATEMENT
Socrates'	"I know that I know nothing at all."
Olbers'	Why is the night sky black if there is an infinity of stars?
Faraday's	Diluted HNO ₃ corrodes steel – concentrated HNO ₃ does not.
of Pesticide	Applying pesticide to a pest may increase it's abundance.
of Value	Water is more useful than diamonds, yet is a lot cheaper.

http://en.wikipedia.org/wiki/List_of_paradoxes

It turns out Hamilton's Method is subject to three possible paradoxes:

- Alabama Paradox
- Population Paradox
- New States Paradox

Definition

(Alabama Paradox)

Increasing the total seats may decrease a state's apportionment.

This happened in 1880, when the U.S. Census Bureau discovered that Alabama would get 8 of 299 House seats, but only 7 of 300 House seats.

STATE:	State 1	State 2	State 3
POPULATION:	531	733	1136
FAIR QUOTA: $(M = 11)$			
QUOTA: (<i>M</i> = 11)			
APPORTIONMENT: $(M = 11)$			
FAIR QUOTA: $(M = 12)$			
QUOTA: (<i>M</i> = 12)			
APPORTIONMENT: $(M = 12)$			

STATE:	State 1	State 2	State 3
POPULATION:	531	733	1136
FAIR QUOTA: $(M = 11)$	2.4337	3.3596	5.2067
QUOTA: (<i>M</i> = 11)	2	3	5
APPORTIONMENT: $(M = 11)$			
FAIR QUOTA: (<i>M</i> = 12)			
QUOTA: (<i>M</i> = 12)			
APPORTIONMENT: $(M = 12)$			

$$N = 3, M = 11, P = 2400, D = \frac{P}{M} = 218.1818, T = \sum_{k=1}^{3} Q_k = 2 + 3 + 5 = 10$$

STATE:	State 1	State 2	State 3
POPULATION:	531	733	1136
FAIR QUOTA: $(M = 11)$	2.4337	3.3596	5.2067
QUOTA: (<i>M</i> = 11)	2	3	5
APPORTIONMENT: $(M = 11)$	3	3	5
FAIR QUOTA: (<i>M</i> = 12)			
QUOTA: (<i>M</i> = 12)			
APPORTIONMENT: $(M = 12)$			

$$N = 3, M = 11, P = 2400, D = \frac{P}{M} = 218.1818, T = \sum_{k=1}^{3} Q_k = 2 + 3 + 5 = 10$$

STATE:	State 1	State 2	State 3
POPULATION:	531	733	1136
FAIR QUOTA: $(M = 11)$	2.4337	3.3596	5.2067
QUOTA: (<i>M</i> = 11)	2	3	5
APPORTIONMENT: $(M = 11)$	3	3	5
FAIR QUOTA: $(M = 12)$	2.6550	3.6650	5.6800
QUOTA: (<i>M</i> = 12)	2	3	5
APPORTIONMENT: $(M = 12)$			

$$N = 3, M = 12, P = 2400, D = \frac{P}{M} = 200, T = \sum_{k=1}^{3} Q_k = 2 + 3 + 5 = 10$$

STATE:	State 1	State 2	State 3
POPULATION:	531	733	1136
FAIR QUOTA: $(M = 11)$	2.4337	3.3596	5.2067
QUOTA: (<i>M</i> = 11)	2	3	5
APPORTIONMENT: $(M = 11)$	3	3	5
FAIR QUOTA: $(M = 12)$	2.6550	3.6650	5.6800
QUOTA: (<i>M</i> = 12)	2	3	5
APPORTIONMENT: $(M = 12)$	2	4	6

$$N = 3, M = 12, P = 2400, D = \frac{P}{M} = 200, T = \sum_{k=1}^{3} Q_k = 2 + 3 + 5 = 10$$

STATE:	State 1	State 2	State 3
POPULATION:	531	733	1136
APPORTIONMENT: $(M = 11)$	3	3	5
APPORTIONMENT: $(M = 12)$	2	4	6

WEX 10-1-3: Use Hamilton's Method with 11 seats & 12 seats below. Explain (in <u>one</u> sentence) why the Alabama Paradox occurs.

STATE:	State 1	State 2	State 3
POPULATION:	531	733	1136
APPORTIONMENT: $(M = 11)$	3	3	5
APPORTIONMENT: $(M = 12)$	2	4	6

The Alabama Paradox occurs since

increasing seats from 11 to 12 caused State 1 to lose one seat .

How often does the Alabama Paradox occur??

STATE:	State 1	State 2	State 3
POPULATION:	531	733	1136
APPORT. (<i>M</i> = 11)	3	3	5
APPORT. (<i>M</i> = 12)	2	4	6
APPORT. (<i>M</i> = 47)	11	14	22
APPORT. (<i>M</i> = 48)	10	15	23
APPORT. (<i>M</i> = 142)	32	43	67
APPORT. (<i>M</i> = 143)	31	44	68
APPORT. (<i>M</i> = 178)	40	54	84
APPORT. (<i>M</i> = 179)	39	55	85
APPORT. (<i>M</i> = 273)	61	83	129
APPORT. (<i>M</i> = 274)	60	84	130
APPORT. (<i>M</i> = 368)	82	112	174
APPORT. (<i>M</i> = 369)	81	113	175
APPORT. (<i>M</i> = 499)	111	152	236
APPORT. (<i>M</i> = 500)	110	153	237

Josh Engwer (TTU)

Definition

(Population Paradox)

A small fast-growing state can lose a seat to a large slow-growing state.

This happened in 1900, when Virginia was growing much faster than Maine, but Virginia lost a House seat & Maine gained a House seat.

THIS PARADOX OCCURS LESS FREQUENTLY THAN THE OTHER PARADOXES & IS HARDER TO DEMONSTRATE, AND HENCE WILL NO LONGER BE CONSIDERED GOING FORWARD.

Definition

(New States Paradox)

The addition of a new state with its fair share of seats can affect the apportionments of other states.

This happened in 1907, when Oklahoma joined the Union. The House increased five seats, which were to be apportioned to Oklahoma. However, this caused Maine to gain one seat & New York to lose one seat! WEX 10-1-4: (a) Use Hamilton's Method with 30 seats on the 3 states below.

STATE:	State 1	State 2	State 3	State 4
POPULATION:	531	733	1136	(N/A)
FAIR QUOTA:				(N/A)
QUOTA:				(N/A)
APPORT.: (3 states)				(N/A)
POPULATION:	531	733	1136	324
FAIR QUOTA:				
QUOTA:				
APPORT.: (4 states)				

New States Paradox (Example)

WEX 10-1-4: (a) Use Hamilton's Method with 30 seats on the 3 states below.

STATE:	State 1	State 2	State 3	State 4
POPULATION:	531	733	1136	(N/A)
FAIR QUOTA:	6.6375	9.1625	14.2000	(N/A)
QUOTA:	6	9	14	(N/A)
APPORT.: (3 states)	7	9	14	(N/A)
POPULATION:	531	733	1136	324
FAIR QUOTA:				
QUOTA:				
APPORT.: (4 states)				

$$N = 3, M = 30, P = 2400, D = \frac{P}{M} = 80, T = \sum_{k=1}^{3} Q_k = 6 + 9 + 14 = 29$$

WEX 10-1-4: (b) Use Hamilton's Method with 33 seats on the 4 states below.

STATE:	State 1	State 2	State 3	State 4
POPULATION:	531	733	1136	(N/A)
FAIR QUOTA:	6.6375	9.1625	14.2000	(N/A)
QUOTA:	6	9	14	(N/A)
APPORT.: (3 states)	7	9	14	(N/A)
POPULATION:	531	733	1136	324
FAIR QUOTA:				
QUOTA:				
APPORT.: (4 states)				

New States Paradox (Example)

WEX 10-1-4: (b) Use Hamilton's Method with 33 seats on the 4 states below.

STATE:	State 1	State 2	State 3	State 4
POPULATION:	531	733	1136	(N/A)
FAIR QUOTA:	6. <mark>6375</mark>	9.1625	14.2000	(N/A)
QUOTA:	6	9	14	(N/A)
APPORT.: (3 states)	7	9	14	(N/A)
POPULATION:	531	733	1136	324
FAIR QUOTA:	6.4328	8.8800	13.7621	3.9251
QUOTA:	6	8	13	3
APPORT.: (4 states)	6	9	14	4

$$N = 4, M = 33, P = 2400, D = \frac{P}{M} = 72.7273, T = \sum_{k=1}^{4} Q_k = 6 + 8 + 13 + 3 = 30$$

WEX 10-1-4:

(c) Explain (in one sentence) why the New States Paradox occurs.

STATE:	State 1	State 2	State 3	State 4
POPULATION:	531	733	1136	(N/A)
APPORT.: (3 states)	7	9	14	(N/A)
POPULATION:	531	733	1136	324
APPORT.: (4 states)	6	9	14	4

WEX 10-1-4:

(c) Explain (in one sentence) why the New States Paradox occurs.

STATE:	State 1	State 2	State 3	State 4
POPULATION:	531	733	1136	(N/A)
APPORT.: (3 states)	7	9	14	(N/A)
POPULATION:	531	733	1136	324
APPORT.: (4 states)	6	9	14	4

The New States Paradox occurs since including State 4 caused State 1 to lose one seat

A "Pathological" Apportionment using Hamilton

Though rare, it's possible for Hamilton to fail:

STATE:	State 1	State 2	State 3	State 4
POPULATION:	100	100	100	100
FAIR QUOTA:	1.25	1.25	1.25	1.25
QUOTA:	1 + ??	1 + ??	1 + ??	1 + ??

Apportion M = 5 seats to N = 4 states

 $T = \sum_{k=1}^{4} Q_k = 1 + 1 + 1 + 1 = 4$ Surplus Seats = M - T = 5 - 4 = 1

There's one surplus seat to assign, but each state has the same fair quota!!

So, which state earns the surplus seat???

Therein lies the problem!

A "Pathological" Apportionment using Hamilton

Though rare, it's possible for Hamilton to fail:

STATE:	State 1	State 2	State 3	State 4
POPULATION:	100	100	100	100
FAIR QUOTA:	1.75	1.75	1.75	1.75
QUOTA:	1 + ??	1 + ??	1 + ??	1 + ??

Apportion M = 7 seats to N = 4 states

 $T = \sum_{k=1}^{4} Q_k = 1 + 1 + 1 + 1 = 4$ Surplus Seats = M - T = 7 - 4 = 3

Three surplus seats to assign, but each state has the same fair quota!!

So, which states earn a surplus seat???

Therein lies the problem!

Fin.