Methods of Jefferson, Adams & Webster

Contemporary Math

Josh Engwer

TTU

14 July 2015

Josh Engwer (TTU)

It is often convenient to have mathematical notation for rounding numbers.

Always Round Down: $\lfloor 3 \rfloor = 3 \quad \lfloor 3.1 \rfloor = 3 \quad \lfloor 3.5 \rfloor = 3 \quad \lfloor 3.9 \rfloor = 3$

Always Round Up: [3] = 3 [3.1] = 4 [3.5] = 4 [3.9] = 4

Round to Nearest Integer: [3] = 3 [3.1] = 3 [3.5] = 4 [3.9] = 4

 $\lfloor x \rfloor$ is called the **floor function**.

 $\lceil x \rceil$ is called the **ceiling function**.

Hamilton's Method (of Apportionment)

Proposition

(Hamilton's Method)

Given *N* states *w*/ populations $P_1, P_2, P_3, ..., P_{N-1}, P_N$, and **total population** *P* Given *M* seats to be apportioned among the *N* states Determine the apportionment for each state, labeled $A_1, A_2, A_3, ..., A_{N-1}, A_N$

STEP 1: Compute standard divisor

If T < M, assign each of the (M - T) surplus seats (one at a time) to the states having **quotas** with the **largest fractional parts**

STEP 4:

 $\mathcal{Z}^{k} \quad [D]$ $T = \sum_{k=1}^{N} Q_{k}$

 $A_k = Q_k + (any \ surplus)$

 $D = \frac{P}{M}$

Jefferson's Method (of Apportionment)

Proposition

(Jefferson's Method)

Given N states and M seats to be apportioned among the states:

- STEP 1: Compute standard divisor $D = \frac{P}{M}$
- STEP 2: Pick parameter α such that -1
- STEP 3: Compute divisor
- STEP 4: Compute quotas, rounding down $Q_k = \left| \frac{P_k}{D_*} \right|$

If $T \neq M$, goto STEP 2

STEP 5: Compute the total quota

STEP 6:

If T = M, assign quotasJosh Engwer (TTU)
Methods of Jeffe

 $D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right]$

$$T = \sum_{k=1}^{N} Q_k$$

$$-1 \le \alpha \le 0$$

$$A_k = O_k$$

Adams' Method (of Apportionment)

Proposition

(Adams' Method)

Given N states and M seats to be apportioned among the states:

STEP 1: Compute **standard divisor** $D = \frac{P}{M}$

STEP 2: Pick parameter α such that $0 \le \alpha \le 1$

STEP 3: Compute divisor

STEP 4: Compute quotas, rounding up

STEP 5: Compute the total quota

STEP 6:

$$\sum_{k=1}^{k} A_k = Q_k$$

 $D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right]$

 $Q_k = \left[\frac{P_k}{D^*}\right]$

 $T = \sum_{i=1}^{N} O_{i}$

5/47

Webster's Method (of Apportionment)

Proposition

(Webster's Method)

Given N states and M seats to be apportioned among the states:

 $D = \frac{P}{M}$ STEP 1: Compute standard divisor Pick **parameter** α such that STEP 2: $-1 \leq \alpha \leq 1$ $D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right]$ STEP 3: Compute divisor $Q_k = \left\| \frac{P_k}{D^*} \right\|$ Compute quotas, rounding as usual STEP 4: $T=\sum^{N}Q_{k}$ Compute the total quota STEP 5: If $T \neq M$, goto STEP 2 STEP 6: $A_k = Q_k$ If T = M, assign quotas

....is nearly impossible to do!

Therefore, α must be found by **trial & error**.

It turns out that there is a range of α -values that work.

However, the <u>size</u> of the range can sometimes be very tiny (< 1/100)

So, using trial-and-error on a range as tiny as one-hundreth in size can be long and tedious – it may take upwards of 10 guesses of α to finally find a suitable value in the range!!

Therefore, going forward with Jefferson's, Adams', and Webster's methods:

A suitable choice for α will be provided to you a priori.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

 $\alpha = -0.40, N = 3, M = 13, P = \sum_{k=1}^{3} P_k = P_1 + P_2 + P_3 = 124 + 97 + 109 = 330$

STEP 0: Collect given information.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

 $\alpha = -0.40, N = 3, M = 13, P = 330$

STEP 0: Collect given information.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

 $\alpha = -0.40, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{300}{13} = 25.3846$

STEP 1: Compute standard divisor.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

$$\alpha = -0.40, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (-0.40)\left(\frac{3}{13}\right)\right] = 23.0414$$

STEP 2: Compute divisor.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
QUOTA:	124/ <i>D</i> *	97/D*	109/ <i>D</i> *

$$\alpha = -0.40, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (-0.40)\left(\frac{3}{13}\right)\right] = 23.0414$$

STEP 3: Compute quotas, rounding down:

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
QUOTA:	5.3816	4.2098	4.7306

$$\alpha = -0.40, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (-0.40)\left(\frac{3}{13}\right)\right] = 23.0414$$

STEP 3: Compute quotas, rounding down:

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
QUOTA:	5	4	4

$$\alpha = -0.40, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (-0.40)\left(\frac{3}{13}\right)\right] = 23.0414$$

STEP 3: Compute quotas, rounding down:

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
QUOTA:	5	4	4

$$\alpha = -0.40, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (-0.40)\left(\frac{3}{13}\right)\right] = 23.0414$$

Therefore: State 1 gets 5 seats State 2 gets 4 seats State 3 gets 4 seats

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

 $\alpha = 0.62, N = 3, M = 13, P = \sum_{k=1}^{3} P_k = P_1 + P_2 + P_3 = 124 + 97 + 109 = 330$

STEP 0: Collect given information.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

 $\alpha = 0.62, N = 3, M = 13, P = 330$

STEP 0: Collect given information.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

$$\alpha = 0.62, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$

STEP 1: Compute standard divisor.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

$$\alpha = 0.62, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (0.62)\left(\frac{3}{13}\right)\right] = 29.0166$$

STEP 2: Compute divisor.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
QUOTA:	124/ <i>D</i> *	97/D*	109/ <i>D</i> *

$$\alpha = 0.62, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (0.62)\left(\frac{3}{13}\right)\right] = 29.0166$$
STEP 3: Compute quotas, rounding up:
$$Q_k = \left[\frac{P_k}{D^*}\right]$$

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
QUOTA:	4.2734	3.3429	3.7565

$$\alpha = 0.62, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (0.62)\left(\frac{3}{13}\right)\right] = 29.0166$$
STEP 3: Compute quotas, **rounding up**:
$$Q_k = \left[\frac{P_k}{D^*}\right]$$

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
QUOTA:	5	4	4

$$\alpha = 0.62, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (0.62)\left(\frac{3}{13}\right)\right] = 29.0166$$

STEP 3: Compute quotas, rounding up:

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
QUOTA:	5	4	4

$$\alpha = 0.62, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (0.62)\left(\frac{3}{13}\right)\right] = 29.0166$$

Therefore: State 1 gets 5 seats State 2 gets 4 seats State 3 gets 4 seats

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

$$\alpha = 0, N = 3, M = 13, P = \sum_{k=1}^{3} P_k = P_1 + P_2 + P_3 = 124 + 97 + 109 = 330$$

STEP 0: Collect given information.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

 $\alpha = 0, N = 3, M = 13, P = 330$

STEP 0: Collect given information.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

$$\alpha = 0, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$

STEP 1: Compute standard divisor.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109

$$\alpha = 0, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (0)\left(\frac{3}{13}\right)\right] = 25.3846$$

STEP 2: Compute divisor.

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
QUOTA:	124/ <i>D</i> *	97/D*	109/ <i>D</i> *

$$\alpha = 0, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (0)\left(\frac{3}{13}\right)\right] = 25.3846$$

STEP 3: Compute quotas, **rounding as usual**: $Q_k = \left[\frac{P_k}{D^*} \right]$

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
QUOTA:	4.8849	3.8212	4.2939

$$\alpha = 0, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (0)\left(\frac{3}{13}\right)\right] = 25.3846$$

STEP 3: Compute quotas, rounding as usual: $Q_k = \left[\frac{P_k}{D^*} \right]$

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
QUOTA:	5	4	4

$$\alpha = 0, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (0)\left(\frac{3}{13}\right)\right] = 25.3846$$

STEP 3: Compute quotas, rounding as usual: $Q_k = \left[\frac{P_k}{D^*} \right]$

STATE:	State 1	State 2	State 3
POPULATION:	124	97	109
QUOTA:	5	4	4

$$\alpha = 0, N = 3, M = 13, P = 330, D = \frac{P}{M} = \frac{330}{13} = 25.3846$$
$$D^* = D\left[1 + \alpha\left(\frac{N}{M}\right)\right] = 25.3846\left[1 + (0)\left(\frac{3}{13}\right)\right] = 25.3846$$

Therefore: State 1 gets 5 seats State 2 gets 4 seats State 3 gets 4 seats

Different Notions of Averaging Two Numbers

Definition

(Arithmetic Mean)

The arithmetic mean of numbers *a* and *b* is: $AM(a,b) = \frac{1}{2}(a+b)$

Definition

(Geometric Mean)

The **geometric mean** of numbers *a* and *b* is: $GM(a,b) = \sqrt{ab}$

Definition

(Harmonic Mean)

The **harmonic mean** of numbers *a* and *b* is: HM(a, b) =

$$(a,b) = \frac{1}{\frac{1}{2}\left(\frac{1}{a} + \frac{1}{b}\right)}$$

Different Notions of Averaging Two Numbers

a	b	AM(a,b)	GM(a,b)	HM(a,b)
1	1.25	1.125	1.118	1.111
1	1.50	1.250	1.225	1.200
1	2.00	1.500	1.414	1.333
1	3.00	2.000	1.732	1.500
1	5.00	3.000	2.236	1.667
1	10.0	5.500	3.162	1.818
1	20.0	10.50	4.472	1.905
1	50.0	25.50	7.071	1.961
1	100	50.50	10.0	1.980
1	200	100.5	14.1	1.990
1	1000	500.5	31.6	1.998

Theorem

(Inequality of Means)

 $a \leq HM(a,b) \leq GM(a,b) \leq AM(a,b) \leq b$

Josh Engwer (TTU)

Methods of Jefferson, Adams & Webster

Different Notions of Averaging Two Numbers

For the purposes of apportionment, these means will always involve **consecutive positive integers**:

a	b	AM(a,b)	GM(a,b)	HM(a,b)
1	2	1.500	1.414	1.333
2	3	2.500	2.449	2.400
3	4	3.500	3.464	3.429
4	5	4.500	4.472	4.444
10	11	10.500	10.488	10.476
20	21	20.500	20.494	20.488
50	51	50.500	50.4975	50.4950
100	101	100.5	100.4988	100.4975
1000	1001	1000.5	1000.49988	1000.49975
10000	10001	10000.5	10000.499988	10000.499975

Theorem

(Inequality of Means)

$$a \leq HM(a,b) \leq GM(a,b) \leq AM(a,b) \leq b$$

Josh Engwer (TTU)

TIME PERIOD	APPORTIONMENT	ROUND	SURPLUS
1792 to 1840	Jefferson	Down	N/A
1842	Webster	Relative to AM	N/A
1850 to 1900	Hamilton	Down	Absolute Fract. Parts
1901, 1911	Webster	Relative to AM	N/A
1921	(None Used)	N/A	N/A
1931	Webster	Relative to AM	N/A
1941-Present	Huntington-Hill	Relative to GM	N/A
(Never)	Adams	Up	N/A
(Never)	Dean	Relative to HM	N/A
(Never)	Lowndes	Down	Relative Fract. Parts

Computing Huntington-Hill, Dean, and Lowndes is beyond our scope. Geometric means (GM) & harmonic means (HM) are beyond our scope.

Apportion M = 13 seats to N = 3 states

	State 1	State 2	State 3	Suitable α -values
Population	124	97	109	
Hamilton	5	4	4	
Jefferson	5	4	4	$-0.61 < \alpha < -0.20$
Adams	5	4	4	0.32 < lpha < 0.95
Webster	5	4	4	$-0.19 < \alpha < 0.37$
Huntington	5	4	4	$-0.17 < \alpha < 0.39$
Dean	5	4	4	$-0.14 < \alpha < 0.42$

It's possible for some of the apportionment methods to differ.

"Pathlogical" Apportionment Scenarios

Though rare, it's possible for Jefferson's Method to fail:

State 1 State 2 State 3 Population 120240 360 Hamilton 2 5 4 Jefferson (FAILED) (FAILED) (FAILED) Adams ($\alpha = 0.5$) 2 5 4 Webster ($\alpha = 0.1$) 2 5 2 5 **H-H** ($\alpha = 0.15$) 2 5 **Dean** ($\alpha = 0.15$) 4

Apportion M = 11 seats to N = 3 states

Why Jefferson fails:

$$\begin{array}{ll} \alpha < -\frac{11}{36} & \Longrightarrow & T \ge 12 > 11 = M \\ \alpha \ge -\frac{11}{36} & \Longrightarrow & T \le & 9 < 11 = M \end{array}$$

"Pathlogical" Apportionment Scenarios

Though rare, it's possible for Adams' Method to fail:

Apportion $M =$	Apportion $M = 13$ seals to $N = 3$ states				
	State 1	State 2	State 3		
Population	120	240	360		
Hamilton	2	4	7		
Jefferson ($\alpha = -0.5$)	2	4	7		
Adams	(FAILED)	(FAILED)	(FAILED)		
Webster $(\alpha = 0)$	2	4	7		
H-H ($\alpha = -0.05$)	2	4	7		
Dean ($\alpha = -0.05$)	2	4	7		

Apportion M 12 addta to M2 ototoo

Why Adams fails:

$$\alpha \le \frac{13}{36} \implies T \ge 15 > 13 = M$$

 $\alpha > \frac{13}{36} \implies T \le 12 < 13 = M$

- 13

< 13 = M

"Pathlogical" Apportionment Scenarios

Though rare, it's possible for Webster's Method to fail:

State 1 State 2 State 3 State 4 Population 9 7 19 Hamilton 14 11 29 **Jefferson** ($\alpha = -0.4$) 14 29 11 Adams ($\alpha = 0.7$) 2 14 11 28 Webster (FAILED) (FAILED) (FAILED) (FAILED) **H-H** ($\alpha = 0.26$) 14 28 2 11 **Dean** ($\alpha = 0.265$) 2 28 14 11

Apportion M = 55 seats to N = 4 states

Why Webster fails:

$$\alpha \le \frac{55}{216} \implies T \ge 56 > 55 = M$$
$$\alpha > \frac{55}{216} \implies T \le 52 < 55 = M$$

Extreme "Pathlogical" Apportionment Scenarios

Though contrived, it's possible for all methods to fail:

	State 1	State 2	State 3	State 4
Population	100	100	100	100
Hamilton	(FAILED)	(FAILED)	(FAILED)	(FAILED)
Jefferson	(FAILED)	(FAILED)	(FAILED)	(FAILED)
Adams	(FAILED)	(FAILED)	(FAILED)	(FAILED)
Webster	(FAILED)	(FAILED)	(FAILED)	(FAILED)
H-H	(FAILED)	(FAILED)	(FAILED)	(FAILED)
Dean	(FAILED)	(FAILED)	(FAILED)	(FAILED)

Apportion M = 5 seats to N = 4 states

METHOD	THRESHOLD α -VALUES
Jefferson	$\alpha = -\frac{15}{32} = -0.46875$
Adams	$\alpha = \frac{5}{16} = 0.3125$
Webster	$\alpha = -\frac{5}{24} \approx -0.20833$
Huntington-Hill	$\alpha \approx -0.14514$
Dean	$\alpha = -\frac{5}{64} = -0.078125$

Extreme "Pathlogical" Apportionment Scenarios

Though contrived, it's possible for all methods to fail:

/Y	portion m =			-
	State 1	State 2	State 3	State 4
Population	100	100	100	100
Hamilton	(FAILED)	(FAILED)	(FAILED)	(FAILED)
Jefferson	(FAILED)	(FAILED)	(FAILED)	(FAILED)
Adams	(FAILED)	(FAILED)	(FAILED)	(FAILED)
Webster	(FAILED)	(FAILED)	(FAILED)	(FAILED)
H-H	(FAILED)	(FAILED)	(FAILED)	(FAILED)
Dean	(FAILED)	(FAILED)	(FAILED)	(FAILED)

Apportion M = 7 seats to N = 4 states

METHOD	THRESHOLD α -VALUES
Jefferson	$\alpha = -\frac{7}{32} = -0.21875$
Adams	$\alpha = \frac{21}{16} = 1.3125$
Webster	$\alpha = \frac{7}{24} \approx 0.29167$
Huntington-Hill	$\alpha \approx 0.4155$
Dean	$\alpha = \frac{35}{64} = 0.546875$

A Comparison of the Apportionment Methods

	HAMILTON	JEFF.	ADAMS	WEBSTER	H-H
Paradoxes?	Yes (all 3)	No	No	No	No
Violates Quota Rule?	No	Yes	Yes	Yes	Yes
Favors Large States	Yes	Yes	No	No	No
Favors Small States	No	No	Yes	No	Yes

Dean's Method is even more biased towards small states than H-H.

....is, unfortunately, a fool's errand:

Theorem

(Young's Impossibility Theorem)

It's impossible to construct an apportionment method that:

• Does not violate the Quota Rule

– AND –

• Does not produce any paradoxes

The consensus is that **Webster's Method** is the best method most of the time.

Fin.