Probability: Unions, Intersections, Complements

Contemporary Math

Josh Engwer

TTU
29 July 2015

Probability of an Event Not Occurring

Proposition

(Probability of an Event Not Occurring)

$$
P(\operatorname{Not} E)=1-P(E)
$$

which is equivalent to

$$
P\left(E^{c}\right)=1-P(E)
$$

Sample Space (S)

Complement of Event (Ec)

Probability of an Event Not Occurring (Example)

WEX 13-2-1: Two fair coins are flipped.
Find the probability of not getting two heads.

Probability of an Event Not Occurring (Example)

WEX 13-2-1: Two fair coins are flipped. Find the probability of not getting two heads.

Sample Space $S=\{H H, H T, T H, T T\}$

Probability of an Event Not Occurring (Example)

WEX 13-2-1: Two fair coins are flipped.
Find the probability of not getting two heads.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E=($ Two heads $)=\{H H\}$

Probability of an Event Not Occurring (Example)

WEX 13-2-1: Two fair coins are flipped.
Find the probability of not getting two heads.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E=($ Two heads $)=\{H H\}$
Then, $P($ Not two heads $)=P\left(E^{c}\right)=1-P(E)=1-\frac{1}{4}=\frac{3}{4}$

Probability of a Disjunction of Two Events

Proposition

(Probability of a Disjunction of Two Events)

$$
\begin{gathered}
P(E \text { or } F)=P(E)+P(F)-P(E \text { and } F) \\
\text { which is equivalent to } \\
P(E \cup F)=P(E)+P(F)-P(E \cap F)
\end{gathered}
$$

Sample Space (S)

Probability of a Disjunction of Two Events (Example)

WEX 13-2-2: Two fair coins are flipped.
Find the probability for two heads or two tails.

Probability of a Disjunction of Two Events (Example)

WEX 13-2-2: Two fair coins are flipped.
Find the probability for two heads or two tails.
Sample Space $S=\{H H, H T, T H, T T\}$

Probability of a Disjunction of Two Events (Example)

WEX 13-2-2: Two fair coins are flipped.
Find the probability for two heads or two tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv($ Two Heads $)=\{H H\}$
Let $E_{2} \equiv($ Two Tails $)=\{T T\}$
Then, $E_{1} \cap E_{2}=\{H H\} \cap\{T T\}=\emptyset$

Probability of a Disjunction of Two Events (Example)

WEX 13-2-2: Two fair coins are flipped.
Find the probability for two heads or two tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv($ Two Heads $)=\{H H\}$
Let $E_{2} \equiv($ Two Tails $)=\{T T\}$
Then, $E_{1} \cap E_{2}=\{H H\} \cap\{T T\}=\emptyset$
P (Two heads or two tails) $=P\left(E_{1}\right.$ or $\left.E_{2}\right)$

Probability of a Disjunction of Two Events (Example)

WEX 13-2-2: Two fair coins are flipped.
Find the probability for two heads or two tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv$ (Two Heads) $=\{H H\}$
Let $E_{2} \equiv($ Two Tails $)=\{T T\}$
Then, $E_{1} \cap E_{2}=\{H H\} \cap\{T T\}=\emptyset$
P (Two heads or two tails) $=P\left(E_{1}\right.$ or $\left.E_{2}\right)$

$$
=P\left(E_{1} \cup E_{2}\right)
$$

Probability of a Disjunction of Two Events (Example)

WEX 13-2-2: Two fair coins are flipped.
Find the probability for two heads or two tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv($ Two Heads $)=\{H H\}$
Let $E_{2} \equiv($ Two Tails $)=\{T T\}$
Then, $E_{1} \cap E_{2}=\{H H\} \cap\{T T\}=\emptyset$
P (Two heads or two tails) $=P\left(E_{1}\right.$ or $\left.E_{2}\right)$

$$
\begin{aligned}
& =P\left(E_{1} \cup E_{2}\right) \\
& =P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)
\end{aligned}
$$

Probability of a Disjunction of Two Events (Example)

WEX 13-2-2: Two fair coins are flipped.
Find the probability for two heads or two tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv$ (Two Heads) $=\{H H\}$
Let $E_{2} \equiv($ Two Tails $)=\{T T\}$
Then, $E_{1} \cap E_{2}=\{H H\} \cap\{T T\}=\emptyset$
P (Two heads or two tails) $=P\left(E_{1}\right.$ or $\left.E_{2}\right)$

$$
\begin{aligned}
& =P\left(E_{1} \cup E_{2}\right) \\
& =P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right) \\
& =\frac{1}{4}+\frac{1}{4}-P(\emptyset)
\end{aligned}
$$

Probability of a Disjunction of Two Events (Example)

WEX 13-2-2: Two fair coins are flipped.
Find the probability for two heads or two tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv($ Two Heads $)=\{H H\}$
Let $E_{2} \equiv($ Two Tails $)=\{T T\}$
Then, $E_{1} \cap E_{2}=\{H H\} \cap\{T T\}=\emptyset$
P (Two heads or two tails) $=P\left(E_{1}\right.$ or $\left.E_{2}\right)$

$$
\begin{aligned}
& =P\left(E_{1} \cup E_{2}\right) \\
& =P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right) \\
& =\frac{1}{4}+\frac{1}{4}-P(\emptyset) \\
& =\frac{1}{4}+\frac{1}{4}-0
\end{aligned}
$$

Probability of a Disjunction of Two Events (Example)

WEX 13-2-2: Two fair coins are flipped.
Find the probability for two heads or two tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv($ Two Heads $)=\{H H\}$
Let $E_{2} \equiv($ Two Tails $)=\{T T\}$
Then, $E_{1} \cap E_{2}=\{H H\} \cap\{T T\}=\emptyset$
P (Two heads or two tails) $=P\left(E_{1}\right.$ or $\left.E_{2}\right)$

$$
\begin{aligned}
& =P\left(E_{1} \cup E_{2}\right) \\
& =P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right) \\
& =\frac{1}{4}+\frac{1}{4}-P(\emptyset) \\
& =\frac{1}{4}+\frac{1}{4}-0 \\
& =\frac{1}{2}
\end{aligned}
$$

Mutually Exclusive Events (Definition)

Definition

(Mutually Exclusive Events)
Events E, F are mutually exclusive if they have no outcomes in common. In other words, $E \cap F=\emptyset \Longleftrightarrow P(E \cap F)=0$

$$
\text { Sample Space }(S)
$$

Mutually Exclusive Events

Mutually Exclusive Events (Definition)

Definition

(Mutually Exclusive Events)
Events E, F are mutually exclusive if they have no outcomes in common. In other words, $E \cap F=\emptyset \Longleftrightarrow P(E \cap F)=0$

Sample Space (S)

Not Mutually Exclusive

Probability of Two Events Not Occurring

Proposition

(Probability of Two Events Not Occurring)

$$
P(\text { Neither } E \text { nor } F)=1-P(E)-P(F)+P(E \text { and } F)
$$

which is equivalent to

$$
P\left[(E \cup F)^{c}\right]=1-P(E)-P(F)+P(E \cap F)
$$

Sample Space (S)

Probability of Two Events Not Occurring (Example)

WEX 13-2-3: Two fair coins are flipped.
Find the probability that neither the $1^{s t}$ coin is heads nor the $2^{\text {nd }}$ coin is tails.

Probability of Two Events Not Occurring (Example)

WEX 13-2-3: Two fair coins are flipped.
Find the probability that neither the $1^{s t}$ coin is heads nor the $2^{\text {nd }}$ coin is tails.
Sample Space $S=\{H H, H T, T H, T T\}$

Probability of Two Events Not Occurring (Example)

WEX 13-2-3: Two fair coins are flipped.
Find the probability that neither the $1^{s t}$ coin is heads nor the $2^{\text {nd }}$ coin is tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv\left(1^{s t}\right.$ coin is heads $)=\{H H, H T\}$
Let $E_{2} \equiv\left(2^{\text {nd }}\right.$ coin is tails $)=\{H T, T T\}$

Probability of Two Events Not Occurring (Example)

WEX 13-2-3: Two fair coins are flipped.
Find the probability that neither the $1^{s t}$ coin is heads nor the $2^{\text {nd }}$ coin is tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv\left(1^{s t}\right.$ coin is heads $)=\{H H, H T\}$
Let $E_{2} \equiv\left(2^{\text {nd }}\right.$ coin is tails $)=\{H T, T T\}$
Then, $E_{1} \cap E_{2}=\{H H, H T\} \cap\{H T, T T\}=\{H T\}$

Probability of Two Events Not Occurring (Example)

WEX 13-2-3: Two fair coins are flipped.
Find the probability that neither the $1^{s t}$ coin is heads nor the $2^{\text {nd }}$ coin is tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv\left(1^{s t}\right.$ coin is heads $)=\{H H, H T\}$
Let $E_{2} \equiv\left(2^{\text {nd }}\right.$ coin is tails $)=\{H T, T T\}$
Then, $E_{1} \cap E_{2}=\{H H, H T\} \cap\{H T, T T\}=\{H T\}$
$P\binom{$ Neither $1^{\text {st }}$ coin is heads }{ nor $2^{\text {nd }}$ coin is tails }$=P\left(\right.$ Neither E_{1} nor $\left.E_{2}\right)$

Probability of Two Events Not Occurring (Example)

WEX 13-2-3: Two fair coins are flipped.
Find the probability that neither the $1^{s t}$ coin is heads nor the $2^{\text {nd }}$ coin is tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv\left(1^{s t}\right.$ coin is heads $)=\{H H, H T\}$
Let $E_{2} \equiv\left(2^{\text {nd }}\right.$ coin is tails $)=\{H T, T T\}$
Then, $E_{1} \cap E_{2}=\{H H, H T\} \cap\{H T, T T\}=\{H T\}$
$P\binom{$ Neither $1^{\text {st }}$ coin is heads }{ nor $2^{\text {nd }}$ coin is tails }$=P\left(\right.$ Neither E_{1} nor $\left.E_{2}\right)$

$$
=P\left[\left(E_{1} \cup E_{2}\right)^{c}\right]
$$

Probability of Two Events Not Occurring (Example)

WEX 13-2-3: Two fair coins are flipped.
Find the probability that neither the $1^{s t}$ coin is heads nor the $2^{\text {nd }}$ coin is tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv\left(1^{s t}\right.$ coin is heads $)=\{H H, H T\}$
Let $E_{2} \equiv\left(2^{\text {nd }}\right.$ coin is tails $)=\{H T, T T\}$
Then, $E_{1} \cap E_{2}=\{H H, H T\} \cap\{H T, T T\}=\{H T\}$
$P\binom{$ Neither $1^{s t}$ coin is heads }{ nor $2^{n d}$ coin is tails }

$$
\begin{aligned}
& =P\left(\text { Neither } E_{1} \text { nor } E_{2}\right) \\
& =P\left[\left(E_{1} \cup E_{2}\right)^{c}\right] \\
& =1-P\left(E_{1}\right)-P\left(E_{2}\right)+P\left(E_{1} \cap E_{2}\right)
\end{aligned}
$$

Probability of Two Events Not Occurring (Example)

WEX 13-2-3: Two fair coins are flipped.
Find the probability that neither the $1^{s t}$ coin is heads nor the $2^{\text {nd }}$ coin is tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv\left(1^{s t}\right.$ coin is heads $)=\{H H, H T\}$
Let $E_{2} \equiv\left(2^{\text {nd }}\right.$ coin is tails $)=\{H T, T T\}$
Then, $E_{1} \cap E_{2}=\{H H, H T\} \cap\{H T, T T\}=\{H T\}$
$P\binom{$ Neither $1^{s t}$ coin is heads }{ nor $2^{\text {nd }}$ coin is tails }

$$
\begin{aligned}
& =P\left(\text { Neither } E_{1} \text { nor } E_{2}\right) \\
& =P\left[\left(E_{1} \cup E_{2}\right)^{c}\right] \\
& =1-P\left(E_{1}\right)-P\left(E_{2}\right)+P\left(E_{1} \cap E_{2}\right) \\
& =1-\frac{2}{4}-\frac{2}{4}+\frac{1}{4}
\end{aligned}
$$

Probability of Two Events Not Occurring (Example)

WEX 13-2-3: Two fair coins are flipped.
Find the probability that neither the $1^{s t}$ coin is heads nor the $2^{\text {nd }}$ coin is tails.
Sample Space $S=\{H H, H T, T H, T T\}$
Let $E_{1} \equiv\left(1^{s t}\right.$ coin is heads $)=\{H H, H T\}$
Let $E_{2} \equiv\left(2^{\text {nd }}\right.$ coin is tails $)=\{H T, T T\}$
Then, $E_{1} \cap E_{2}=\{H H, H T\} \cap\{H T, T T\}=\{H T\}$
$P\binom{$ Neither $1^{\text {st }}$ coin is heads }{ nor $2^{\text {nd }}$ coin is tails }

$$
\begin{aligned}
& =P\left(\text { Neither } E_{1} \text { nor } E_{2}\right) \\
& =P\left[\left(E_{1} \cup E_{2}\right)^{c}\right] \\
& =1-P\left(E_{1}\right)-P\left(E_{2}\right)+P\left(E_{1} \cap E_{2}\right) \\
& =1-\frac{2}{4}-\frac{2}{4}+\frac{1}{4} \\
& =\frac{1}{4}
\end{aligned}
$$

One More Example

WEX 13-2-4: Let $P(E \cup F)=0.30, P(E)=0.15, P(F)=0.25$.
Find: $\begin{array}{lll}\text { (a) } P(E \cap F) & \text { (b) } P\left[(E \cup F)^{c}\right] & \text { (c) } P\left[(E \cap F)^{c}\right]\end{array}$

One More Example

WEX 13-2-4: Let $P(E \cup F)=0.30, P(E)=0.15, P(F)=0.25$.
Find: $\begin{array}{lll}\text { (a) } P(E \cap F) & \text { (b) } P\left[(E \cup F)^{c}\right] & \text { (c) } P\left[(E \cap F)^{c}\right]\end{array}$
(a) $P(E \cup F)=P(E)+P(F)-P(E \cap F)$

One More Example

WEX 13-2-4: Let $P(E \cup F)=0.30, P(E)=0.15, P(F)=0.25$.

Find: $\begin{array}{lll}\text { (a) } P(E \cap F) & \text { (b) } P\left[(E \cup F)^{c}\right] & \text { (c) } P\left[(E \cap F)^{c}\right]\end{array}$
(a) $P(E \cup F)=P(E)+P(F)-P(E \cap F)$
$\Longrightarrow 0.30=0.15+0.25-P(E \cap F)$

One More Example

WEX 13-2-4: Let $P(E \cup F)=0.30, P(E)=0.15, P(F)=0.25$.
Find: $\begin{array}{lll}\text { (a) } P(E \cap F) & \text { (b) } P\left[(E \cup F)^{c}\right] & \text { (c) } P\left[(E \cap F)^{c}\right]\end{array}$
(a) $P(E \cup F)=P(E)+P(F)-P(E \cap F)$
$\Longrightarrow 0.30=0.15+0.25-P(E \cap F)$
$\Longrightarrow 0.30=0.40-P(E \cap F)$

One More Example

WEX 13-2-4: Let $P(E \cup F)=0.30, P(E)=0.15, P(F)=0.25$.
Find: $\begin{array}{lll}\text { (a) } P(E \cap F) & \text { (b) } P\left[(E \cup F)^{c}\right] & \text { (c) } P\left[(E \cap F)^{c}\right]\end{array}$
(a) $P(E \cup F)=P(E)+P(F)-P(E \cap F)$
$\Longrightarrow 0.30=0.15+0.25-P(E \cap F)$
$\Longrightarrow 0.30=0.40-P(E \cap F)$
$\Longrightarrow-0.10=-P(E \cap F)$

One More Example

WEX 13-2-4: Let $P(E \cup F)=0.30, P(E)=0.15, P(F)=0.25$.

Find: $\begin{array}{lll}\text { (a) } P(E \cap F) & \text { (b) } P\left[(E \cup F)^{c}\right] & \text { (c) } P\left[(E \cap F)^{c}\right]\end{array}$

$$
\begin{aligned}
& \text { (a) } P(E \cup F)=P(E)+P(F)-P(E \cap F) \\
& \Longrightarrow \Longrightarrow 0.30=0.15+0.25-P(E \cap F) \\
& \Longrightarrow \Longrightarrow-0.10=0.40-P(E \cap F) \\
& \Longrightarrow-P(E \cap F) \\
& \Longrightarrow \\
& \Longrightarrow
\end{aligned} P(E \cap F)=0.10
$$

One More Example

WEX 13-2-4: Let $P(E \cup F)=0.30, P(E)=0.15, P(F)=0.25$.
Find: $\begin{array}{lll}\text { (a) } P(E \cap F) & \text { (b) } P\left[(E \cup F)^{c}\right] & \text { (c) } P\left[(E \cap F)^{c}\right]\end{array}$
(a) $P(E \cup F)=P(E)+P(F)-P(E \cap F)$
$\Longrightarrow 0.30=0.15+0.25-P(E \cap F)$
$\Longrightarrow 0.30=0.40-P(E \cap F)$
$\Longrightarrow-0.10=-P(E \cap F)$
$\Longrightarrow P(E \cap F)=0.10$
(b) $P\left[(E \cup F)^{c}\right]=1-P(E \cup F)$

One More Example

WEX 13-2-4: Let $P(E \cup F)=0.30, P(E)=0.15, P(F)=0.25$.
Find: $\begin{array}{lll}\text { (a) } P(E \cap F) & \text { (b) } P\left[(E \cup F)^{c}\right] & \text { (c) } P\left[(E \cap F)^{c}\right]\end{array}$
(a) $P(E \cup F)=P(E)+P(F)-P(E \cap F)$
$\Longrightarrow 0.30=0.15+0.25-P(E \cap F)$
$\Longrightarrow 0.30=0.40-P(E \cap F)$
$\Longrightarrow-0.10=-P(E \cap F)$
$\Longrightarrow P(E \cap F)=0.10$
(b) $P\left[(E \cup F)^{c}\right]=1-P(E \cup F)=1-0.30=0.70$

One More Example

WEX 13-2-4: Let $P(E \cup F)=0.30, P(E)=0.15, P(F)=0.25$.
Find: $\begin{array}{lll}\text { (a) } P(E \cap F) & \text { (b) } P\left[(E \cup F)^{c}\right] & \text { (c) } P\left[(E \cap F)^{c}\right]\end{array}$
(a) $P(E \cup F)=P(E)+P(F)-P(E \cap F)$
$\Longrightarrow 0.30=0.15+0.25-P(E \cap F)$
$\Longrightarrow 0.30=0.40-P(E \cap F)$
$\Longrightarrow-0.10=-P(E \cap F)$
$\Longrightarrow P(E \cap F)=0.10$
(b) $P\left[(E \cup F)^{c}\right]=1-P(E \cup F)=1-0.30=0.70$
(c) $P\left[(E \cap F)^{c}\right]$

One More Example

WEX 13-2-4: Let $P(E \cup F)=0.30, P(E)=0.15, P(F)=0.25$.
Find: $\begin{array}{lll}\text { (a) } P(E \cap F) & \text { (b) } P\left[(E \cup F)^{c}\right] & \text { (c) } P\left[(E \cap F)^{c}\right]\end{array}$
(a) $P(E \cup F)=P(E)+P(F)-P(E \cap F)$
$\Longrightarrow 0.30=0.15+0.25-P(E \cap F)$
$\Longrightarrow 0.30=0.40-P(E \cap F)$
$\Longrightarrow-0.10=-P(E \cap F)$
$\Longrightarrow P(E \cap F)=0.10$
(b) $P\left[(E \cup F)^{c}\right]=1-P(E \cup F)=1-0.30=0.70$
(c) $P\left[(E \cap F)^{c}\right]=1-P(E \cap F)$

One More Example

WEX 13-2-4: Let $P(E \cup F)=0.30, P(E)=0.15, P(F)=0.25$.
Find: $\begin{array}{lll}\text { (a) } P(E \cap F) & \text { (b) } P\left[(E \cup F)^{c}\right] & \text { (c) } P\left[(E \cap F)^{c}\right]\end{array}$
(a) $P(E \cup F)=P(E)+P(F)-P(E \cap F)$
$\Longrightarrow 0.30=0.15+0.25-P(E \cap F)$
$\Longrightarrow 0.30=0.40-P(E \cap F)$
$\Longrightarrow-0.10=-P(E \cap F)$
$\Longrightarrow P(E \cap F)=0.10$
(b) $P\left[(E \cup F)^{c}\right]=1-P(E \cup F)=1-0.30=0.70$
(c) $P\left[(E \cap F)^{c}\right]=1-P(E \cap F)=1-0.10=0.90$

Fin.

