Conditional Probability, Independence of Events

Contemporary Math

Josh Engwer

TTU

30 July 2015

Conditional Probability (Definition)

The occurrence of one event can affect the probability of another event:

Definition

(Conditional Probability)
Let events E, F be events in a sample space S.
Then:

- The conditional probability of F given E, denoted $P(F \mid E)$, is the probability of event F assuming that event E has already occurred.
- The conditional probability of E given F, denoted $P(E \mid F)$, is the probability of event E assuming that event F has already occurred.

WARNING: Order matters: in general, $P(F \mid E) \neq P(E \mid F)$

Conditional Probability

But the previous definition is too crude to use. How does conditional probability relate to ordinary probablity?

Proposition

(Conditional Probability)
Let events E, F be events in a sample space S.
Then:

$$
P(\text { If } E \text { then } F)=P(F \text { given } E)=P(F \mid E)=\frac{m(E \cap F)}{m(E)}
$$

or equivalently

$$
P(\text { If } E \text { then } F)=P(F \text { given } E)=P(F \mid E)=\frac{P(E \cap F)}{P(E)}
$$

WARNING: Order matters: in general, $P(F \mid E) \neq P(E \mid F)$

Conditional Probability (Example)

WEX 13-3-1: A fair coin is flipped and a fair die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5 .
(b) Find the probability that if the coin shows tails then the die shows 5 .

Conditional Probability (Example)

WEX 13-3-1: A fair coin is flipped and a fair die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5 .
(b) Find the probability that if the coin shows tails then the die shows 5.

Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$

Conditional Probability (Example)

WEX 13-3-1: A fair coin is flipped and a fair die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5 .
(b) Find the probability that if the coin shows tails then the die shows 5 .

Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Coin shows tails $)=\{(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$
Let event $F \equiv($ Die shows 5$) \quad=\{(H, 5),(T, 5)\}$

Conditional Probability (Example)

WEX 13-3-1: A fair coin is flipped and a fair die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5 .
(b) Find the probability that if the coin shows tails then the die shows 5.

Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Coin shows tails $)=\{(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$
Let event $F \equiv($ Die shows 5$) \quad=\{(H, 5),(T, 5)\}$
Then $E \cap F=\{(T, 5)\}$

Conditional Probability (Example)

WEX 13-3-1: A fair coin is flipped and a fair die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5 .
(b) Find the probability that if the coin shows tails then the die shows 5 .

Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Coin shows tails $)=\{(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$
Let event $F \equiv($ Die shows 5$) \quad=\{(H, 5),(T, 5)\}$
Then $E \cap F=\{(T, 5)\}$
$P(E)=\frac{m(E)}{m(S)}=\frac{6}{12}=\frac{1}{2}, \quad P(F)=\frac{m(F)}{m(S)}=\frac{2}{12}=\frac{1}{6}, \quad P(E \cap F)=\frac{m(E \cap F)}{m(S)}=\frac{1}{12}$

Conditional Probability (Example)

WEX 13-3-1: A fair coin is flipped and a fair die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5 .
(b) Find the probability that if the coin shows tails then the die shows 5 .

Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Coin shows tails $)=\{(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$
Let event $F \equiv($ Die shows 5$) \quad=\{(H, 5),(T, 5)\}$
Then $E \cap F=\{(T, 5)\}$
$P(E)=\frac{m(E)}{m(S)}=\frac{6}{12}=\frac{1}{2}, \quad P(F)=\frac{m(F)}{m(S)}=\frac{2}{12}=\frac{1}{6}, \quad P(E \cap F)=\frac{m(E \cap F)}{m(S)}=\frac{1}{12}$
(a) $P(E$ given $F)=P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{1 / 12}{1 / 6}=\frac{1}{12} \div \frac{1}{6}=\frac{1}{12} \times \frac{6}{1}=\frac{1}{2}$

Conditional Probability (Example)

WEX 13-3-1: A fair coin is flipped and a fair die is rolled.
(a) Find the probability that the coin shows tails given that the die shows 5 .
(b) Find the probability that if the coin shows tails then the die shows 5 .

Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Coin shows tails $)=\{(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$
Let event $F \equiv($ Die shows 5$) \quad=\{(H, 5),(T, 5)\}$
Then $E \cap F=\{(T, 5)\}$
$P(E)=\frac{m(E)}{m(S)}=\frac{6}{12}=\frac{1}{2}, \quad P(F)=\frac{m(F)}{m(S)}=\frac{2}{12}=\frac{1}{6}, \quad P(E \cap F)=\frac{m(E \cap F)}{m(S)}=\frac{1}{12}$
(a) $P(E$ given $F)=P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{1 / 12}{1 / 6}=\frac{1}{12} \div \frac{1}{6}=\frac{1}{12} \times \frac{6}{1}=\frac{1}{2}$
(b) $P($ If E then $F)=P(F \mid E)=\frac{P(E \cap F)}{P(E)}=\frac{1 / 12}{1 / 2}=\frac{1}{12} \div \frac{1}{2}=\frac{1}{12} \times \frac{2}{1}=\frac{1}{6}$

Intersection of Events (Alternative Formula)

The intersection of two events can found using conditional probability:

Definition

(Intersection of Two Events)
Let events E, F be events in a sample space S.
Then:

$$
\begin{gathered}
P(E \cap F)=P(E) \cdot P(F \mid E) \\
\text { or equivalently } \\
P(E \cap F)=P(F) \cdot P(E \mid F)
\end{gathered}
$$

Two-Stage Experiments \& Probability Trees

Some experiments are conducted in two stages. Such two-stage experiments can be visualized using a probability tree:

Independence of Events (Definition)

Often it's important to know if two events depend on each other or not:

Definition

(Independent Events)
Let events E, F be events in a sample space S.
Then, events E and F are independent if:

$$
\begin{gathered}
P(F \mid E)=P(F) \\
\text { or equivalently } \\
P(E \mid F)=P(E) \\
\text { or equivalently } \\
P(E \cap F)=P(E) \cdot P(F)
\end{gathered}
$$

Otherwise, events E and F are dependent.

Independence of Events (Example)

WEX 13-3-2: A fair coin is flipped and a fair die is rolled. Are the events "Coin shows tails" and "Die shows 5" independent?

Independence of Events (Example)

WEX 13-3-2: A fair coin is flipped and a fair die is rolled.
Are the events "Coin shows tails" and "Die shows 5" independent?
Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Coin shows tails $)=\{(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$
Let event $F \equiv($ Die shows 5$) \quad=\{(H, 5),(T, 5)\}$
Then $E \cap F=\{(T, 5)\}$
$P(E)=\frac{m(E)}{m(S)}=\frac{6}{12}=\frac{1}{2}, \quad P(F)=\frac{m(F)}{m(S)}=\frac{2}{12}=\frac{1}{6}, \quad P(E \cap F)=\frac{m(E \cap F)}{m(S)}=\frac{1}{12}$

Independence of Events (Example)

WEX 13-3-2: A fair coin is flipped and a fair die is rolled.
Are the events "Coin shows tails" and "Die shows 5" independent?
Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Coin shows tails $)=\{(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$
Let event $F \equiv($ Die shows 5$) \quad=\{(H, 5),(T, 5)\}$
Then $E \cap F=\{(T, 5)\}$
$P(E)=\frac{m(E)}{m(S)}=\frac{6}{12}=\frac{1}{2}, \quad P(F)=\frac{m(F)}{m(S)}=\frac{2}{12}=\frac{1}{6}, \quad P(E \cap F)=\frac{m(E \cap F)}{m(S)}=\frac{1}{12}$
To check independence of the two events, it's easiest to check the relation $P(E \cap F)=P(E) \cdot P(F)$:
$P(E) \cdot P(F)=\frac{1}{2} \times \frac{1}{6}=\frac{1}{12}=P(E \cap F)$

Independence of Events (Example)

WEX 13-3-2: A fair coin is flipped and a fair die is rolled.
Are the events "Coin shows tails" and "Die shows 5" independent?
Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Coin shows tails $)=\{(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$
Let event $F \equiv($ Die shows 5$) \quad=\{(H, 5),(T, 5)\}$
Then $E \cap F=\{(T, 5)\}$
$P(E)=\frac{m(E)}{m(S)}=\frac{6}{12}=\frac{1}{2}, \quad P(F)=\frac{m(F)}{m(S)}=\frac{2}{12}=\frac{1}{6}, \quad P(E \cap F)=\frac{m(E \cap F)}{m(S)}=\frac{1}{12}$
To check independence of the two events, it's easiest to check the relation $P(E \cap F)=P(E) \cdot P(F)$:
$P(E) \cdot P(F)=\frac{1}{2} \times \frac{1}{6}=\frac{1}{12}=P(E \cap F)$
Therefore, since $P(E \cap F)=P(E) \cdot P(F)$, events E, F are independent

Independence of Events (Example)

WEX 13-3-3: A fair coin is flipped and a fair die is rolled. Are the events "Die shows 3 " and "Die shows 5 " independent?

Independence of Events (Example)

WEX 13-3-3: A fair coin is flipped and a fair die is rolled. Are the events "Die shows 3 " and "Die shows 5" independent?

Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Die shows 3$)=\{(H, 3),(T, 3)\}$
Let event $F \equiv($ Die shows 5$)=\{(H, 5),(T, 5)\}$

Independence of Events (Example)

WEX 13-3-3: A fair coin is flipped and a fair die is rolled. Are the events "Die shows 3 " and "Die shows 5 " independent?

Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Die shows 3$)=\{(H, 3),(T, 3)\}$
Let event $F \equiv($ Die shows 5$)=\{(H, 5),(T, 5)\}$
Then $E \cap F=\emptyset$

Independence of Events (Example)

WEX 13-3-3: A fair coin is flipped and a fair die is rolled.
Are the events "Die shows 3 " and "Die shows 5 " independent?
Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Die shows 3$)=\{(H, 3),(T, 3)\}$
Let event $F \equiv($ Die shows 5$)=\{(H, 5),(T, 5)\}$
Then $E \cap F=\emptyset$
$P(E)=\frac{m(E)}{m(S)}=\frac{2}{12}=\frac{1}{6}, \quad P(F)=\frac{m(F)}{m(S)}=\frac{2}{12}=\frac{1}{6}, \quad P(E \cap F)=\frac{m(E \cap F)}{m(S)}=\frac{0}{12}$

Independence of Events (Example)

WEX 13-3-3: A fair coin is flipped and a fair die is rolled.
Are the events "Die shows 3 " and "Die shows 5 " independent?
Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv($ Die shows 3$)=\{(H, 3),(T, 3)\}$
Let event $F \equiv$ (Die shows 5$)=\{(H, 5),(T, 5)\}$
Then $E \cap F=\emptyset$
$P(E)=\frac{m(E)}{m(S)}=\frac{2}{12}=\frac{1}{6}, \quad P(F)=\frac{m(F)}{m(S)}=\frac{2}{12}=\frac{1}{6}, \quad P(E \cap F)=\frac{m(E \cap F)}{m(S)}=\frac{0}{12}$
To check independence of the two events, it's easiest to check the relation $P(E \cap F)=P(E) \cdot P(F)$:
$P(E) \cdot P(F)=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36} \neq 0=P(E \cap F)$

Independence of Events (Example)

WEX 13-3-3: A fair coin is flipped and a fair die is rolled.
Are the events "Die shows 3 " and "Die shows 5" independent?
Sample space $S=\left\{\begin{array}{c}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$
Let event $E \equiv$ (Die shows 3$)=\{(H, 3),(T, 3)\}$
Let event $F \equiv($ Die shows 5$)=\{(H, 5),(T, 5)\}$
Then $E \cap F=\emptyset$
$P(E)=\frac{m(E)}{m(S)}=\frac{2}{12}=\frac{1}{6}, \quad P(F)=\frac{m(F)}{m(S)}=\frac{2}{12}=\frac{1}{6}, \quad P(E \cap F)=\frac{m(E \cap F)}{m(S)}=\frac{0}{12}$
To check independence of the two events, it's easiest to check the relation $P(E \cap F)=P(E) \cdot P(F)$:
$P(E) \cdot P(F)=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36} \neq 0=P(E \cap F)$
Therefore, since $P(E \cap F) \neq P(E) \cdot P(F)$, events E, F are dependent

Fin.

