Probability: Expected Value
 Contemporary Math

Josh Engwer

TTU
30 July 2015

Expected Value (Definition)

How can one use probabilities to determine long-term expectations?

Definition

(Expected Value)
Suppose an experiment has a sample space with N possible outcomes with probabilities $P_{1}, P_{2}, \ldots, P_{N}$.
Moreover, assume each outcome has an associated value with it that are labeled $V_{1}, V_{2}, \ldots, V_{N}$.
Then, the expected value of the experiment is:

$$
E V=\sum_{k=1}^{N} P_{k} V_{k}=P_{1} V_{1}+P_{2} V_{2}+\cdots+P_{N} V_{N}
$$

Expected value is particularly used in the following situations:

- How much money is expected to be gained/lost when playing a game of chance repeatedly?
- How much should an insurance policy premium be?
- How much profit is expected to be gained/lost long-term?

Expected Value (Example)

EX 13-4-1: Given the following table of the probabilities \& values associated with the four outcomes of an experiment:

OUTCOME	PROBABILITY	VALUE
A	0.37	-5
B	0.20	6
C	0.43	-3

Compute the expected value for the experiment.

Expected Value (Example)

EX 13-4-1: Given the following table of the probabilities \& values associated with the four outcomes of an experiment:

OUTCOME	PROBABILITY	VALUE
A	0.37	-5
B	0.20	6
C	0.43	-3

Compute the expected value for the experiment.
$\left(\right.$ Expected Value) $=P_{A} V_{A}+P_{B} V_{B}+P_{C} V_{C}$

Expected Value (Example)

EX 13-4-1: Given the following table of the probabilities \& values associated with the four outcomes of an experiment:

OUTCOME	PROBABILITY	VALUE
A	0.37	-5
B	0.20	6
C	0.43	-3

Compute the expected value for the experiment.

$$
\begin{aligned}
(\text { Expected Value) } & =P_{A} V_{A}+P_{B} V_{B}+P_{C} V_{C} \\
& =(0.37)(-5)+(0.20)(6)+(0.43)(-3)
\end{aligned}
$$

Expected Value (Example)

EX 13-4-1: Given the following table of the probabilities \& values associated with the four outcomes of an experiment:

OUTCOME	PROBABILITY	VALUE
A	0.37	-5
B	0.20	6
C	0.43	-3

Compute the expected value for the experiment.
$($ Expected Value $)=P_{A} V_{A}+P_{B} V_{B}+P_{C} V_{C}$

$$
\begin{aligned}
& =(0.37)(-5)+(0.20)(6)+(0.43)(-3) \\
& =-1.94
\end{aligned}
$$

Games of Chance (Expected Value)

Proposition

(Expected Value of Games of Chance)
If the experiment is playing a game of chance, then:

- The game is fair if the game has an expected value of zero: $\quad E V=0$
- The game is unfair if it has an expected value that's not zero: $E V \neq 0$

REMARK: Casinos ensure that their games have a negative expected value so that they make money off their customers.

Games of Chance (Example)

WEX 13-4-2: You pay $\$ 1.00$ to play roulette. A roulette wheel has 38 slots. If the ball lands on the slot labeled 20, you win $\$ 30$. Otherwise, you lose the dollar you paid to play the game.
(a) Find the expected value for playing a game of roulette.
(b) If you play 1000 consecutive games of roulette, what should you expect?

Games of Chance (Example)

WEX 13-4-2: You pay $\$ 1.00$ to play roulette. A roulette wheel has 38 slots. If the ball lands on the slot labeled 20, you win $\$ 30$.
Otherwise, you lose the dollar you paid to play the game.
(a) Find the expected value for playing a game of roulette.
(b) If you play 1000 consecutive games of roulette, what should you expect?

Sample Space $S=\{$ slot " $1 "$, slot " $2 ", \cdots$, slot " 37 ", slot " 38 " $\}$
Event $E \equiv$ (Ball lands on slot "20") $=\{$ slot " $20 "\}$

Games of Chance (Example)

WEX 13-4-2: You pay $\$ 1.00$ to play roulette. A roulette wheel has 38 slots. If the ball lands on the slot labeled 20, you win $\$ 30$. Otherwise, you lose the dollar you paid to play the game.
(a) Find the expected value for playing a game of roulette.
(b) If you play 1000 consecutive games of roulette, what should you expect?

Sample Space $S=\{$ slot " 1 ", slot " 2 ", \cdots, slot " 37 ", slot " 38 " $\}$
Event $E \equiv$ (Ball lands on slot "20") $=\{$ slot " $20 "\}$
$P\left(\right.$ Ball lands on slot "20") $=P(E)=\frac{m(E)}{m(S)}=\frac{1}{38}$
$P($ Ball does not land on slot " 20 " $)=P\left(E^{c}\right)=1-P(E)=1-\frac{1}{38}=\frac{37}{38}$

Games of Chance (Example)

WEX 13-4-2: You pay $\$ 1.00$ to play roulette. A roulette wheel has 38 slots. If the ball lands on the slot labeled 20, you win $\$ 30$.
Otherwise, you lose the dollar you paid to play the game.
(a) Find the expected value for playing a game of roulette.
(b) If you play 1000 consecutive games of roulette, what should you expect?

Sample Space $S=\{$ slot " 1 ", slot " 2 ", \cdots, slot " 37 ", slot " 38 " $\}$
Event $E \equiv$ (Ball lands on slot "20") $=\{$ slot " $20 "\}$
$P\left(\right.$ Ball lands on slot "20") $=P(E)=\frac{m(E)}{m(S)}=\frac{1}{38}$
$P($ Ball does not land on slot " $20 ")=P\left(E^{c}\right)=1-P(E)=1-\frac{1}{38}=\frac{37}{38}$

EVENT	PROBABILITY	GAIN/LOSS
E	$\frac{1}{38}$	$\$ 30$
E^{c}	$\frac{37}{38}$	$-\$ 1$

Games of Chance (Example)

WEX 13-4-2: You pay $\$ 1.00$ to play roulette. A roulette wheel has 38 slots. If the ball lands on the slot labeled 20, you win $\$ 30$. Otherwise, you lose the dollar you paid to play the game.
(a) Find the expected value for playing a game of roulette.
(b) If you play 1000 consecutive games of roulette, what should you expect?

EVENT	PROBABILITY	GAIN/LOSS
E	$\frac{1}{38}$	$\$ 30$
E^{c}	$\frac{37}{38}$	$-\$ 1$

(a) (Expected Value) $=(\$ 30) P(E)+(-\$ 1) P\left(E^{c}\right)$

Games of Chance (Example)

WEX 13-4-2: You pay $\$ 1.00$ to play roulette. A roulette wheel has 38 slots. If the ball lands on the slot labeled 20, you win $\$ 30$.
Otherwise, you lose the dollar you paid to play the game.
(a) Find the expected value for playing a game of roulette.
(b) If you play 1000 consecutive games of roulette, what should you expect?

EVENT	PROBABILITY	GAIN/LOSS
E	$\frac{1}{38}$	$\$ 30$
E^{c}	$\frac{37}{38}$	$-\$ 1$

(a) $($ Expected Value $)=(\$ 30) P(E)+(-\$ 1) P\left(E^{c}\right)$

$$
=(\$ 30)\left(\frac{1}{38}\right)+(-\$ 1)\left(\frac{37}{38}\right)
$$

Games of Chance (Example)

WEX 13-4-2: You pay $\$ 1.00$ to play roulette. A roulette wheel has 38 slots. If the ball lands on the slot labeled 20, you win $\$ 30$.
Otherwise, you lose the dollar you paid to play the game.
(a) Find the expected value for playing a game of roulette.
(b) If you play 1000 consecutive games of roulette, what should you expect?

EVENT	PROBABILITY	GAIN/LOSS
E	$\frac{1}{38}$	$\$ 30$
E^{c}	$\frac{37}{38}$	$-\$ 1$

(a) $\left(\right.$ Expected Value) $=(\$ 30) P(E)+(-\$ 1) P\left(E^{c}\right)$

$$
\begin{aligned}
& =(\$ 30)\left(\frac{1}{38}\right)+(-\$ 1)\left(\frac{37}{38}\right) \\
& =-\frac{7}{38}
\end{aligned}
$$

Games of Chance (Example)

WEX 13-4-2: You pay $\$ 1.00$ to play roulette. A roulette wheel has 38 slots. If the ball lands on the slot labeled 20, you win $\$ 30$. Otherwise, you lose the dollar you paid to play the game.
(a) Find the expected value for playing a game of roulette.
(b) If you play 1000 consecutive games of roulette, what should you expect?

EVENT	PROBABILITY	GAIN/LOSS
E	$\frac{1}{38}$	$\$ 30$
E^{c}	$\frac{37}{38}$	$-\$ 1$

(a) (Expected Value) $=(\$ 30) P(E)+(-\$ 1) P\left(E^{c}\right)$

$$
\begin{aligned}
& =(\$ 30)\left(\frac{1}{38}\right)+(-\$ 1)\left(\frac{37}{38}\right) \\
& =-\frac{7}{38} \approx-\$ 0.18
\end{aligned}
$$

Games of Chance (Example)

WEX 13-4-2: You pay $\$ 1.00$ to play roulette. A roulette wheel has 38 slots. If the ball lands on the slot labeled 20, you win $\$ 30$. Otherwise, you lose the dollar you paid to play the game.
(a) Find the expected value for playing a game of roulette.
(b) If you play 1000 consecutive games of roulette, what should you expect?

EVENT	PROBABILITY	GAIN/LOSS
E	$\frac{1}{38}$	$\$ 30$
E^{c}	$\frac{37}{38}$	$-\$ 1$

(a) (Expected Value) $=(\$ 30) P(E)+(-\$ 1) P\left(E^{c}\right)$

$$
=(\$ 30)\left(\frac{1}{38}\right)+(-\$ 1)\left(\frac{37}{38}\right)
$$

$$
=-\frac{7}{38} \approx-\$ 0.18
$$

(b) (1000 games) $(-\$ 0.18$ per game $)=-\$ 180 \Longrightarrow$ Expect to lose $\$ 180$

Fin.

