Statistics: Range, Standard Deviation

Contemporary Math

Josh Engwer

TTU
03 August 2015

Summarizing Data by Measuring its Dispersion

One way to summarize data is to visualize the data using:

- Bar Graphs
- Histrograms
- Stem-and-Leaf Displays

One way to numerically summarize data is to measure its central tendency:

- Mean
- Median
- Mode

A $2^{\text {nd }}$ way to numerically summarize data is to measure its dispersion:

- Range
- Standard Deviation

Range \& Standard Deviation of a Data Set (Definition)

Definition

(Range of a Data Set)
Given a data set with n data values.
Then the range is the difference between the largest and smallest values.

Definition

(Standard Deviation of a Data Set)
Given a data set with n data values.
Then the standard deviation measures "how spread out" the data is:

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}
$$

Range \& Standard Deviation of a Data Set (Example)

WEX 14-3-1: Given the following data set:

$$
3,15,8,11,15
$$

(a) Compute the range of the data set.
(b) Compute the mean of the data set.
(c) Compute the standard deviation of the data set.

Range \& Standard Deviation of a Data Set (Example)

WEX 14-3-1: Given the following data set:

$$
3,15,8,11,15
$$

(a) Compute the range of the data set.
(b) Compute the mean of the data set.
(c) Compute the standard deviation of the data set.
(a) Range = (Largest Data Value) - (Smallest Data Value)

Range \& Standard Deviation of a Data Set (Example)

WEX 14-3-1: Given the following data set:

$$
3,15,8,11,15
$$

(a) Compute the range of the data set.
(b) Compute the mean of the data set.
(c) Compute the standard deviation of the data set.
(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=15-3=12$

Range \& Standard Deviation of a Data Set (Example)

WEX 14-3-1: Given the following data set:

$$
3,15,8,11,15
$$

(a) Compute the range of the data set.
(b) Compute the mean of the data set.
(c) Compute the standard deviation of the data set.
(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=15-3=12$
(b) $\bar{x}=\frac{\sum x}{n}$

Range \& Standard Deviation of a Data Set (Example)

WEX 14-3-1: Given the following data set:

$$
3,15,8,11,15
$$

(a) Compute the range of the data set.
(b) Compute the mean of the data set.
(c) Compute the standard deviation of the data set.
(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=15-3=12$
(b) $\bar{x}=\frac{\sum x}{n}=\frac{3+15+8+11+15}{5}=\frac{52}{5}=10.4$

Range \& Standard Deviation of a Data Set (Example)

WEX 14-3-1: Given the following data set:

$$
3,15,8,11,15
$$

(a) Compute the range of the data set.
(b) Compute the mean of the data set.
(c) Compute the standard deviation of the data set.
(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=15-3=12$
(b) $\bar{x}=\frac{\sum x}{n}=\frac{3+15+8+11+15}{5}=\frac{52}{5}=10.4$
(c) $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$

Range \& Standard Deviation of a Data Set (Example)

WEX 14-3-1: Given the following data set:

$$
3,15,8,11,15
$$

(a) Compute the range of the data set.
(b) Compute the mean of the data set.
(c) Compute the standard deviation of the data set.
(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=15-3=12$
(b) $\bar{x}=\frac{\sum x}{n}=\frac{3+15+8+11+15}{5}=\frac{52}{5}=10.4$
(c) $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$
$=\sqrt{\frac{(\mathbf{3}-\mathbf{1 0 . 4})^{2}+(\mathbf{1 5}-\mathbf{1 0 . 4})^{2}+(\mathbf{8}-\mathbf{1 0 . 4})^{2}+(\mathbf{1 1}-\mathbf{1 0 . 4})^{2}+(\mathbf{1 5}-\mathbf{1 0 . 4})^{2}}{5-1}}$

Range \& Standard Deviation of a Data Set (Example)

WEX 14-3-1: Given the following data set:

$$
3,15,8,11,15
$$

(a) Compute the range of the data set.
(b) Compute the mean of the data set.
(c) Compute the standard deviation of the data set.
(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=15-3=12$
(b) $\bar{x}=\frac{\sum x}{n}=\frac{3+15+8+11+15}{5}=\frac{52}{5}=10.4$
(c) $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$
$=\sqrt{\frac{(3-10.4)^{2}+(15-10.4)^{2}+(8-10.4)^{2}+(11-10.4)^{2}+(15-10.4)^{2}}{5-1}}$
$=\sqrt{\frac{103.2}{4}}$

Range \& Standard Deviation of a Data Set (Example)

WEX 14-3-1: Given the following data set:

$$
3,15,8,11,15
$$

(a) Compute the range of the data set.
(b) Compute the mean of the data set.
(c) Compute the standard deviation of the data set.
(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=15-3=12$
(b) $\bar{x}=\frac{\sum x}{n}=\frac{3+15+8+11+15}{5}=\frac{52}{5}=10.4$
(c) $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$
$=\sqrt{\frac{(3-10.4)^{2}+(15-10.4)^{2}+(8-10.4)^{2}+(11-10.4)^{2}+(15-10.4)^{2}}{5-1}}$
$=\sqrt{\frac{103.2}{4}} \approx 5.0794$

Range \& Standard Deviation of a Freq. Dist. (Def'n)

Definition

(Range of a Frequency Distribution)
The range is the difference between the largest and smallest values.

Definition

(Standard Deviation of a Frequency Distribution)
The standard deviation measures "how spread out" the data is:

$$
s=\sqrt{\frac{\sum\left[(x-\bar{x})^{2} \cdot f\right]}{\left(\sum f\right)-1}}
$$

Range \& Standard Dev. of a Freq. Dist. (Example)

WEX 14-3-2: Given the following frequency distribution:

DATA VALUE	FREQUENCY
(x)	(f)
6	23
9	12
20	31

(a) Compute the range of the frequency distribution.
(b) Compute the mean of the frequency distribution.
(c) Compute the standard deviation of the frequency distribution.

Range \& Standard Dev. of a Freq. Dist. (Example)

WEX 14-3-2: Given the following frequency distribution:

DATA VALUE	FREQUENCY
(x)	(f)
6	23
9	12
20	31

(a) Compute the range of the frequency distribution.
(b) Compute the mean of the frequency distribution.
(c) Compute the standard deviation of the frequency distribution.
(a) Range $=($ Largest Data Value) $-($ Smallest Data Value $)$

Range \& Standard Dev. of a Freq. Dist. (Example)

WEX 14-3-2: Given the following frequency distribution:

DATA VALUE	FREQUENCY
(x)	(f)
6	23
9	12
20	31

(a) Compute the range of the frequency distribution.
(b) Compute the mean of the frequency distribution.
(c) Compute the standard deviation of the frequency distribution.
(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=20-6=14$

Range \& Standard Dev. of a Freq. Dist. (Example)

WEX 14-3-2: Given the following frequency distribution:

DATA VALUE	FREQUENCY
(x)	(f)
6	23
9	12
20	31

(a) Compute the range of the frequency distribution.
(b) Compute the mean of the frequency distribution.
(c) Compute the standard deviation of the frequency distribution.
(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=20-6=14$
(b) $\bar{x}=\frac{\sum(x \cdot f)}{\sum f}$

Range \& Standard Dev. of a Freq. Dist. (Example)

WEX 14-3-2: Given the following frequency distribution:

DATA VALUE	FREQUENCY
(x)	(f)
6	23
9	12
20	31

(a) Compute the range of the frequency distribution.
(b) Compute the mean of the frequency distribution.
(c) Compute the standard deviation of the frequency distribution.
(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=20-6=14$
(b) $\bar{x}=\frac{\sum(x \cdot f)}{\sum f}=\frac{(6)(23)+(9)(12)+(20)(31)}{23+12+31}$

Range \& Standard Dev. of a Freq. Dist. (Example)

WEX 14-3-2: Given the following frequency distribution:

DATA VALUE	FREQUENCY
(x)	(f)
6	23
9	12
20	31

(a) Compute the range of the frequency distribution.
(b) Compute the mean of the frequency distribution.
(c) Compute the standard deviation of the frequency distribution.
(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=20-6=14$
(b) $\bar{x}=\frac{\sum(x \cdot f)}{\sum f}=\frac{(6)(23)+(9)(12)+(20)(31)}{23+12+31}=\frac{866}{66} \approx 13.1212$

Range \& Standard Dev. of a Freq. Dist. (Example)

WEX 14-3-2: Given the following frequency distribution:

DATA VALUE	FREQUENCY
(x)	(f)
6	23
9	12
20	31

(a) Compute the range of the frequency distribution.
(b) Compute the mean of the frequency distribution.
(c) Compute the standard deviation of the frequency distribution.
(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=20-6=14$
(b) $\bar{x}=\frac{\sum(x \cdot f)}{\sum f}=\frac{(6)(23)+(9)(12)+(20)(31)}{23+12+31}=\frac{866}{66} \approx 13.1212$
(c) $s=\sqrt{\frac{\sum\left[(x-\bar{x})^{2} \cdot f\right]}{\left(\sum f\right)-1}}$

Range \& Standard Dev. of a Freq. Dist. (Example)

WEX 14-3-2: Given the following frequency distribution:

DATA VALUE	FREQUENCY
(x)	(f)
6	23
9	12
20	31

(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=20-6=14$
(b) $\bar{x}=\frac{\sum(x \cdot f)}{\sum f}=\frac{(6)(23)+(9)(12)+(20)(31)}{23+12+31}=\frac{866}{66} \approx 13.1212$
(c) $s=\sqrt{\frac{\sum\left[(x-\bar{x})^{2} \cdot f\right]}{\left(\sum f\right)-1}}$
$=\sqrt{\frac{\mathbf{2 3 (6 - 1 3 . 1 2 1 2) ^ { 2 } + \mathbf { 1 2 } (9 - 1 3 . 1 2 1 2) ^ { 2 } + \mathbf { 3 1 } (\mathbf { 2 0 } - 1 3 . 1 2 1 2) ^ { 2 }}}{66-1}}$

Range \& Standard Dev. of a Freq. Dist. (Example)

WEX 14-3-2: Given the following frequency distribution:

DATA VALUE	FREQUENCY
(x)	(f)
6	23
9	12
20	31

(a) Range $=($ Largest Data Value $)-($ Smallest Data Value $)=20-6=14$
(b) $\bar{x}=\frac{\sum(x \cdot f)}{\sum f}=\frac{(6)(23)+(9)(12)+(20)(31)}{23+12+31}=\frac{866}{66} \approx 13.1212$
(c) $s=\sqrt{\frac{\sum\left[(x-\bar{x})^{2} \cdot f\right]}{\left(\sum f\right)-1}}$
$=\sqrt{\frac{23(6-13.1212)^{2}+12(9-13.1212)^{2}+31(20-13.1212)^{2}}{66-1}}$
$=\sqrt{\frac{2837.03}{65}}=6.607$

Fin.

