Statistics: Normal Distributions, 68-95-99.7 Rule

Contemporary Math

Josh Engwer

TTU
04 August 2015

Increasing the Sample Size of a Data Set

$$
n=25
$$

Increasing the Sample Size of a Data Set

$$
n=50
$$

Increasing the Sample Size of a Data Set

Increasing the Sample Size of a Data Set

Increasing the Sample Size of a Data Set

$$
n=5000
$$

Normal Distributions

A normal distribution describes many real-life populations such as:

- Heights of people
- Lifespans of a certain model consumer electronic device
- Standardized exam scores

NOTATION: $\mu \equiv$ Mean of Population
(Greek letter "mu")
NOTATION: $\sigma \equiv$ Std. Dev. of Population (Greek letter "sigma")

Normal Distributions (Properties)

Proposition

(Properties of a Normal Distribution)

- Mean $=$ Median $=$ Mode $=\mu$
- Curve is bell-shaped \& symmetric w.r.t its mean, μ
- The total area under the curve is 1

Varying σ Changes the Shape of a Normal Distribution

Varying σ Changes the Shape of a Normal Distribution

Varying σ Changes the Shape of a Normal Distribution

68-95-99.7 Rule

Given a normal distribution:

Roughly 68% of the data values are within 1 standard deviation from the mean.

68-95-99.7 Rule

Given a normal distribution:

Roughly 95% of the data values are within 2 standard deviations from the mean.

68-95-99.7 Rule

Given a normal distribution:

Roughly 99.7% of the data values are within 3 standard deviations from the mean.

68-95-99.7 Rule

Given a normal distribution:

Roughly 50% of the data values are less than the mean.

68-95-99.7 Rule

Given a normal distribution:

Roughly 50% of the data values are greater than the mean.

Fin.

