Logic: Truth Tables, DeMorgan's Laws

Contemporary Math

Josh Engwer

TTU
20 July 2015

Truth Tables for the AND, OR, NOT Connectives

Truth Table for Conjunction (AND):

P	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	F

Truth Table for Disjunction (OR):

P	Q	$P \vee Q$
T	T	T
T	F	T
F	T	T
F	F	F

	P	$\sim P$
T	F	
	F	T

(Truth tables for the Conditional \& Biconditional are seen in next section.)

Inclusive OR (V) versus Exclusive OR (XOR)

Disjunction is implicitly inclusive OR.

The truth table for inclusive OR:

P	Q	$P \vee Q$
T	T	T
T	F	T
F	T	T
F	F	F

P	Q	P XOR Q
T	T	F
T	F	T
F	T	T
F	F	F

The difference in their truth tables is in blue.
Examples in English:

- Inclusive OR: "The car is compact or red" (or both compact and red)
- Exclusive OR: "I (either) drove to Austin or drove to Dallas" (but not both)

Logic Connectives (Order of Operations)

It's important to know the "order of operations" of logic connectives. Otherwise, statements would require too many parentheses \& brackets.

DOMINANCE:	CONNECTIVES:	
MOST DOMINANT	Biconditional	\longleftrightarrow
$2^{\text {nd }}$ DOMINANT	Conditional	\longrightarrow
$3^{r d}$ DOMINANT	Conjunction	\wedge
	Disjunction	\vee
LEAST DOMINANT	Negation	\sim

REMARK: Since conjunction \& disjunction has equal dominance, statements involving several of them require parentheses \& square brackets!
For example:

- $P \wedge Q \vee R$ is ambiguous! It needs to change to one of the following:

$$
\begin{aligned}
& \star(P \wedge Q) \vee R \\
& \star \quad P \wedge(Q \vee R)
\end{aligned}
$$

* WARNING: The above two statements have different truth tables!
- $(\sim P \vee \sim Q) \wedge \sim R$ is equivalent to $[(\sim P) \vee(\sim Q)] \wedge(\sim R)$
- $(Q \wedge \sim P) \longrightarrow \sim R$ is equivalent to $[(Q \wedge(\sim P))] \longrightarrow(\sim R)$

Truth Tables (Example)

WEX 3-2-1: Construct a truth table for the logic statement: $\sim(P \wedge \sim Q)$

Truth Tables (Example)

WEX 3-2-1: Construct a truth table for the logic statement: $\sim(P \wedge \sim Q)$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$

Truth Tables (Example)

WEX 3-2-1: Construct a truth table for the logic statement: $\sim(P \wedge \sim Q)$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$
T				
T				
F				
F				

Truth Tables (Example)

WEX 3-2-1: Construct a truth table for the logic statement: $\sim(P \wedge \sim Q)$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$
T	T			
T	F			
F	T			
F	F			

Truth Tables (Example)

WEX 3-2-1: Construct a truth table for the logic statement: $\sim(P \wedge \sim Q)$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$
T	T	F		
T	F	T		
F	T	F		
F	F	T		

Truth Tables (Example)

WEX 3-2-1: Construct a truth table for the logic statement: $\sim(P \wedge \sim Q)$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$
T	T	F	F	
T	F	T	T	
F	T	F	F	
F	F	T	F	

Truth Tables (Example)

WEX 3-2-1: Construct a truth table for the logic statement: $\sim(P \wedge \sim Q)$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$
T	T	F	F	T
T	F	T	T	F
F	T	F	F	T
F	F	T	F	T

Truth Tables (Example)

WEX 3-2-1: Construct a truth table for the logic statement: $\sim(P \wedge \sim Q)$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$	
T	T	F	F	T	
T	F	T	T	F	
F	T	F	F	T	
F	F	T	F	T	

Truth Tables (Example)

WEX 3-2-1: Construct a truth table for the logic statement: $\sim(P \wedge \sim Q)$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$	
T	T	F	F	T	
T	F	T	T	F	
F	T	F	F	T	
F	F	T	F	T	
T					

While not required, let's do a quick a posteriori analysis of the truth table:

- If P is true and Q is true, then $\sim(P \wedge \sim Q)$ is true.

Truth Tables (Example)

WEX 3-2-1: Construct a truth table for the logic statement: $\sim(P \wedge \sim Q)$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$	
T	T	F	F	T	
T	F	T	T	F	
F	T	F	F	T	
F	F	T	F	T	
T					

While not required, let's do a quick a posteriori analysis of the truth table:

- If P is true and Q is false, then $\sim(P \wedge \sim Q)$ is false.

Truth Tables (Example)

WEX 3-2-1: Construct a truth table for the logic statement: $\sim(P \wedge \sim Q)$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$	
T	T	F	F	T	
T	F	T	T	F	
F	T	F	F	T	
F	F	T	F	T	

While not required, let's do a quick a posteriori analysis of the truth table:

- If P is false and Q is true, then $\sim(P \wedge \sim Q)$ is true.

Truth Tables (Example)

WEX 3-2-1: Construct a truth table for the logic statement: $\sim(P \wedge \sim Q)$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$	
T	T	F	F	T	
T	F	T	T	F	
F	T	F	F	T	
F	F	T	F	T	

While not required, let's do a quick a posteriori analysis of the truth table:

- If P is false and Q is false, then $\sim(P \wedge \sim Q)$ is true.

Truth Tables (Example)

WEX 3-2-2: Construct a truth table for the logic statement: $(P \wedge Q) \wedge \sim R$

Truth Tables (Example)

WEX 3-2-2: Construct a truth table for the logic statement: $\quad(P \wedge Q) \wedge \sim R$

Truth Tables (Example)

WEX 3-2-2: Construct a truth table for the logic statement: $\quad(P \wedge Q) \wedge \sim R$

Truth Tables (Example)

WEX 3-2-2: Construct a truth table for the logic statement: $(P \wedge Q) \wedge \sim R$

P	Q	R	$(P \wedge Q)$	$\sim R$	$(P \wedge Q) \wedge \sim R$
T	T				
T	T				
T	F				
T	F				
F	T				
F	T				
F	F				
F	F				

Truth Tables (Example)

WEX 3-2-2: Construct a truth table for the logic statement: $(P \wedge Q) \wedge \sim R$

P	Q	R	$(P \wedge Q)$	$\sim R$	$(P \wedge Q) \wedge \sim R$
T	T	T			
T	T	F			
T	F	T			
T	F	F			
F	T	T			
F	T	F			
F	F	T			
F	F	F			

Truth Tables (Example)

WEX 3-2-2: Construct a truth table for the logic statement: $(P \wedge Q) \wedge \sim R$

P	Q	R	$(P \wedge Q)$	$\sim R$	$(P \wedge Q) \wedge \sim R$
T	T	T	T		
T	T	F	T		
T	F	T	F		
T	F	F	F		
F	T	T	F		
F	T	F	F		
F	F	T	F		
F	F	F	F		

Truth Tables (Example)

WEX 3-2-2: Construct a truth table for the logic statement: $(P \wedge Q) \wedge \sim R$

P	Q	R	$(P \wedge Q)$	$\sim R$	$(P \wedge Q) \wedge \sim R$
T	T	T	T	F	
T	T	F	T	T	
T	F	T	F	F	
T	F	F	F	T	
F	T	T	F	F	
F	T	F	F	T	
F	F	T	F	F	
F	F	F	F	T	

Truth Tables (Example)

WEX 3-2-2: Construct a truth table for the logic statement: $(P \wedge Q) \wedge \sim R$

P	Q	R	$(P \wedge Q)$	$\sim R$	$(P \wedge Q) \wedge \sim R$
T	T	T	T	F	F
T	T	F	T	T	T
T	F	T	F	F	F
T	F	F	F	T	F
F	T	T	F	F	F
F	T	F	F	T	F
F	F	T	F	F	F
F	F	F	F	T	F

Truth Tables (Example)

WEX 3-2-2: Construct a truth table for the logic statement: $(P \wedge Q) \wedge \sim R$

P	Q	R	$(P \wedge Q)$	$\sim R$	$(P \wedge Q) \wedge \sim R$
T	T	T	T	F	F
T	T	F	T	T	T
T	F	T	F	F	F
T	F	F	F	T	F
F	T	T	F	F	F
F	T	F	F	T	F
F	F	T	F	F	F
F	F	F	F	T	F

Truth Tables (Example)

WEX 3-2-2: Construct a truth table for the logic statement: $\quad(P \wedge Q) \wedge \sim R$

P	Q	R	$(P \wedge Q)$	$\sim R$	$(P \wedge Q) \wedge \sim R$
T	T	T	T	F	F
T	T	F	T	T	T
T	F	T	F	F	F
T	F	F	F	T	F
F	T	T	F	F	F
F	T	F	F	T	F
F	F	T	F	F	F
F	F	F	F	T	F

While not required, let's do a quick a posteriori analysis of the truth table:

- If P is true, Q is true, and R is true, then $(P \wedge Q) \wedge \sim R$ is false.

Truth Tables (Example)

WEX 3-2-2: Construct a truth table for the logic statement: $\quad(P \wedge Q) \wedge \sim R$

P	Q	R	$(P \wedge Q)$	$\sim R$	$(P \wedge Q) \wedge \sim R$
T	T	T	T	F	F
T	T	F	T	T	T
T	F	T	F	F	F
T	F	F	F	T	F
F	T	T	F	F	F
F	T	F	F	T	F
F	F	T	F	F	F
F	F	F	F	T	F

While not required, let's do a quick a posteriori analysis of the truth table:

- If P is true, Q is true, and R is false, then $(P \wedge Q) \wedge \sim R$ is true.

Truth Tables (Example)

WEX 3-2-2: Construct a truth table for the logic statement: $\quad(P \wedge Q) \wedge \sim R$

P	Q	R	$(P \wedge Q)$	$\sim R$	$(P \wedge Q) \wedge \sim R$	
T	T	T	T	F	F	
T	T	F	T	T	T	
T	F	T	F	F	F	
T	F	F	F	T	F	
F	T	T	F	F	F	
F	T	F	F	T	F	
F	F	T	F	F	F	
F	F	F	F	T	F	

While not required, let's do a quick a posteriori analysis of the truth table:

- If P is false, Q is true, and R is false, then $(P \wedge Q) \wedge \sim R$ is false.

Logical Equivalence (Definition)

Definition

(Logical Equivalence)
Two logic statements are logically equivalent, if they have the same variables (e.g. P, Q, R, \ldots) and the final columns in their truth tables are identical.

NOTATION: The symbol \Longleftrightarrow means "is logically equivalent to"

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

P	Q	R	$\sim R$	$Q \vee \sim R$	$P \wedge(Q \vee \sim R)$
T					
T					
T					
T					
F					
F					
F					
F					

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

P	Q	R	$\sim R$	$Q \vee \sim R$	$P \wedge(Q \vee \sim R)$
T	T				
T	T				
T	F				
T	F				
F	T				
F	T				
F	F				
F	F				

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

P	Q	R	$\sim R$	$Q \vee \sim R$	$P \wedge(Q \vee \sim R)$
T	T	T			
T	T	F			
T	F	T			
T	F	F			
F	T	T			
F	T	F			
F	F	T			
F	F	F			

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

P	Q	R	$\sim R$	$Q \vee \sim R$	$P \wedge(Q \vee \sim R)$
T	T	T	F		
T	T	F	T		
T	F	T	F		
T	F	F	T		
F	T	T	F		
F	T	F	T		
F	F	T	F		
F	F	F	T		

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

P	Q	R	$\sim R$	$Q \vee \sim R$	$P \wedge(Q \vee \sim R)$
T	T	T	F	T	
T	T	F	T	T	
T	F	T	F	F	
T	F	F	T	T	
F	T	T	F	T	
F	T	F	T	T	
F	F	T	F	F	
F	F	F	T	T	

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

P	Q	R	$\sim R$	$Q \vee \sim R$	$P \wedge(Q \vee \sim R)$
T	T	T	F	T	T
T	T	F	T	T	T
T	F	T	F	F	F
T	F	F	T	T	T
F	T	T	F	T	F
F	T	F	T	T	F
F	F	T	F	F	F
F	F	F	T	T	F

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

P	Q	R	$\sim R$	$Q \vee \sim R$	$P \wedge(Q \vee \sim R)$
T	T	T	F	T	T
T	T	F	T	T	T
T	F	T	F	F	F
T	F	F	T	T	T
F	T	T	F	T	F
F	T	F	T	T	F
F	F	T	F	F	F
F	F	F	T	T	F

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

P	Q	R	$\sim R$	$Q \vee \sim R$	$P \wedge(Q \vee \sim R)$
T	T	T	F	T	T
T	T	F	T	T	T
T	F	T	F	F	F
T	F	F	T	T	T
F	T	T	F	T	F
F	T	F	T	T	F
F	F	T	F	F	F
F	F	F	T	T	F

P	Q	R	$\sim Q$	$\sim Q \wedge R$	$\sim(\sim Q \wedge R)$	$P \wedge \sim(\sim Q \wedge R)$
T	T	T				
T	T	F				
T	F	T				
T	F	F				
F	T	T				
F	T	F				
F	F	T				
F	F	F				

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

		P	Q	R	$\sim R$	$Q \vee \sim R$	$P \wedge$	$Q \vee \sim R)$
		T	T	T	F	T		T
		T	T	F	T	T		T
		T	F	T	F	F		F
		T	F	F	T	T		T
		F	T	T	F	T		F
		F	T	F	T	T		F
		F	F	T	F	F		F
		F	F	F	T	T		F
P	Q	R	$\sim Q$		$\sim Q \wedge R$	$\sim(\sim Q$	$\wedge R)$	$P \wedge \sim(\sim$
T	T	T	F					
T	T	F	F					
T	F	T	T					
T	F	F	T					
F	T	T	F					
F	T	F	F					
F	F	T	T					
F	F	F	T					

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

		P	Q	R	$\sim R$	$Q \vee \sim R$	$P \wedge$	$Q \vee \sim R)$	
		T	T	T	F	T		T	
		T	T	F	T	T		T	
		T	F	T	F	F		F	
		T	F	F	T	T		T	
		F	T	T	F	T		F	
		F	T	F	T	T		F	
		F	F	T	F	F		F	
		F	F	F	T	T		F	
P	Q	R	$\sim Q$		$\sim Q \wedge R$	$\sim(\sim Q$	$\wedge R)$	$P \wedge \sim(\sim$	
T	T	T	F		F				
T	T	F	F		F				
T	F	T	T		T				
T	F	F	T		F				
F	T	T	F		F				
F	T	F	F		F				
F	F	T	T		T				
F	F	F	T		F				

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

		P	Q	R	$\sim R$	$Q \vee \sim R$	$P \wedge$	$Q \vee \sim R$
		T	T	T	F	T		T
		T	T	F	T	T		T
		T	F	T	F	F		F
		T	F	F	T	T		T
		F	T	T	F	T		F
		F	T	F	T	T		F
		F	F	T	F	F		F
		F	F	F	T	T		F
P	Q	R	$\sim Q$		$\sim Q \wedge R$	$R \mid \sim(\sim Q$	$\wedge R)$	$P \wedge \sim($
T	T	T	F		F	T		
T	T	F	F		F	T		
T	F	T	T		T	F		
T	F	F	T		F	T		
F	T	T	F		F	T		
F	T	F	F		F	T		
F	F	T	T		T	F		
F	F	F	T		F	T		

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

		P	Q	R	$\sim R$	$Q \vee \sim R$	$P \wedge(Q \vee \sim R)$		
		T	T	T	F	T		T	
		T	T	F	T	T		T	
		T	F	T	F	F		F	
		T	F	F	T	T		T	
		F	T	T	F	T		F	
		F	T	F	T	T		F	
		F	F	T	F	F		F	
		F	F	F	T	T		F	
P	Q	R	$\sim Q$		$\sim Q \wedge R$	$\sim(\sim Q$	$\wedge R)$	$P \wedge \sim(\sim$	$\sim Q \wedge R)$
T	T	T	F		F	T			T
T	T	F	F		F	T			T
T	F	T	T		T	F			F
T	F	F	T		F	T			T
F	T	T	F		F	T			F
F	T	F	F		F	T			F
F	F	T	T		T	F			F
F	F	F	T		F	T			F

Logical Equivalence (Example)

WEX 3-2-3: Determine whether $P \wedge(Q \vee \sim R) \Longleftrightarrow P \wedge \sim(\sim Q \wedge R)$ or not.

P	Q	R	$\sim R$	$Q \vee \sim R$	$P \wedge(Q \vee \sim R)$	$P \wedge \sim(\sim Q \wedge R)$
T	T	T	F	T	T	T
T	T	F	T	T	T	T
T	F	T	F	F	F	F
T	F	F	T	T	T	T
F	T	T	F	T	F	F
F	T	F	T	T	F	F
F	F	T	F	F	F	F
F	F	F	T	T	F	F

Since the corresponding entries (in blue) of $P \wedge(Q \vee \sim R)$ and $P \wedge \sim(\sim Q \wedge R)$ all match,
$P \wedge(Q \vee \sim R)$ and $P \wedge \sim(\sim Q \wedge R)$ are logically equivalent.

Simplifying Logic Statements (DeMorgan's Laws)

Theorem

(DeMorgan's Laws)
(a) $\sim(\sim P) \Longleftrightarrow P$
(b) $\sim(P \wedge Q) \Longleftrightarrow(\sim P) \vee(\sim Q)$
(c) $\sim(P \vee Q) \Longleftrightarrow(\sim P) \wedge(\sim Q)$

Simplifying Logic Statements (DeMorgan's Laws)

Theorem

(DeMorgan's Laws)
(a) $\sim(\sim P) \Longleftrightarrow P$
(b) $\sim(P \wedge Q) \Longleftrightarrow(\sim P) \vee(\sim Q)$
(c) $\sim(P \vee Q) \Longleftrightarrow(\sim P) \wedge(\sim Q)$

PROOF:

(a)

P	$\sim P$	$\sim(\sim P)$
T	F	T
F	T	F

Simplifying Logic Statements (DeMorgan's Laws)

Theorem

(DeMorgan's Laws)
(a) $\sim(\sim P) \Longleftrightarrow P$
(b) $\sim(P \wedge Q) \Longleftrightarrow(\sim P) \vee(\sim Q)$
(c) $\sim(P \vee Q) \Longleftrightarrow(\sim P) \wedge(\sim Q)$

PROOF:

	Q	$P \wedge Q$	$\sim(P \wedge Q)$	$\sim P$	$\sim Q$	$(\sim P) \vee(\sim Q)$
T	T	T	F	F	F	F
(b)	T	F	T	F	T	T
F	T	F	T	T	F	T
	F	F	F	T	T	T

Simplifying Logic Statements (DeMorgan's Laws)

Theorem

(DeMorgan's Laws)
(a) $\sim(\sim P) \Longleftrightarrow P$
(b) $\sim(P \wedge Q) \Longleftrightarrow(\sim P) \vee(\sim Q)$
(c) $\sim(P \vee Q) \Longleftrightarrow(\sim P) \wedge(\sim Q)$

PROOF:

	P	Q	$P \vee Q$	$\sim(P \vee Q)$	$\sim P$	$\sim Q$	$(\sim P) \wedge(\sim Q)$
	T	T	T	F	F	F	F
(c)	T	T	T	F	F	T	F
F	T	T	F	T	F	F	
	F	F	F	T	T	T	T

Simplifying Logic Statements (Example)

WEX 3-2-4: Via DeMorgan's Laws, completely simplify: $\sim[P \vee(\sim Q \wedge \sim R)]$

Simplifying Logic Statements (Example)

WEX 3-2-4: Via DeMorgan's Laws, completely simplify: $\sim[P \vee(\sim Q \wedge \sim R)]$
$\sim[P \vee(\sim Q \wedge \sim R)] \quad \Longleftrightarrow \quad(\sim P) \wedge \sim(\sim Q \wedge \sim R) \quad[$ DeMorgan (c)]

Simplifying Logic Statements (Example)

WEX 3-2-4: Via DeMorgan's Laws, completely simplify: $\sim[P \vee(\sim Q \wedge \sim R)]$

$$
\begin{array}{cccc}
\sim[P \vee(\sim Q \wedge \sim R)] & \Longleftrightarrow & (\sim P) \wedge \sim(\sim Q \wedge \sim R) & \text { [DeMorgan (c)] } \\
& \Longleftrightarrow & (\sim P) \wedge \sim(\sim Q) \vee \sim(\sim R) & \text { [DeMorgan (b)] }
\end{array}
$$

Simplifying Logic Statements (Example)

WEX 3-2-4: Via DeMorgan's Laws, completely simplify: $\sim[P \vee(\sim Q \wedge \sim R)]$

$$
\begin{array}{rll}
\sim[P \vee(\sim Q \wedge \sim R)] & \Longleftrightarrow & (\sim P) \wedge \sim(\sim Q \wedge \sim R) \\
& \Longleftrightarrow & \text { [DeMorgan (c)] } \\
& \Longleftrightarrow(\sim P) \wedge \sim(\sim Q) \vee \sim(\sim R) & \text { [DeMorgan (b)] } \\
& \Longleftrightarrow(\sim P) \wedge Q \vee R & \\
& {[\text { DeMorgan (a) }]}
\end{array}
$$

Negating English Statements (Example)

WEX 3-2-5: Via DeMorgan's Laws, negate the English statement:
"Flowers are not red or John's truck has anti-lock brakes."

Negating English Statements (Example)

WEX 3-2-5: Via DeMorgan's Laws, negate the English statement:
"Flowers are not red or John's truck has anti-lock brakes."
Let $P \equiv$ "Flowers are not red", $\quad Q \equiv$ "John's truck has anti-lock brakes."

Negating English Statements (Example)

WEX 3-2-5: Via DeMorgan's Laws, negate the English statement:
"Flowers are not red or John's truck has anti-lock brakes."
Let $P \equiv$ "Flowers are not red", $\quad Q \equiv$ "John's truck has anti-lock brakes."
Then, "Flowers are not red or John's truck has anti-lock brakes." $\equiv P \vee Q$

Negating English Statements (Example)

WEX 3-2-5: Via DeMorgan's Laws, negate the English statement:
"Flowers are not red or John's truck has anti-lock brakes."
Let $P \equiv$ "Flowers are not red", $\quad Q \equiv$ "John's truck has anti-lock brakes."
Then, "Flowers are not red or John's truck has anti-lock brakes." $\equiv P \vee Q$
Negation: $\sim(P \vee Q) \Longleftrightarrow(\sim P) \wedge(\sim Q)$

Negating English Statements (Example)

WEX 3-2-5: Via DeMorgan's Laws, negate the English statement:
"Flowers are not red or John's truck has anti-lock brakes."
Let $P \equiv$ "Flowers are not red", $\quad Q \equiv$ "John's truck has anti-lock brakes."
Then, "Flowers are not red or John's truck has anti-lock brakes." $\equiv P \vee Q$
Negation: $\sim(P \vee Q) \Longleftrightarrow(\sim P) \wedge(\sim Q)$
\Longleftrightarrow "Flowers are red and John's truck does not have anti-lock brakes."

Fin.

