Logic: Conditional \& Biconditional
 Contemporary Math

Josh Engwer

TTU
21 July 2015

Truth Tables for the Conditional \& Biconditional

Truth Table for Conditional (IF...THEN):	P	Q	$P \longrightarrow Q$		
	T	T	T		
	T	F	F		
	F	T	T		
	F	F	T		
			P	Q	$P \longleftrightarrow Q$
			T	T	T
Truth Table for Biconditional (IF AND ONLY IF):			T	F	F
			F	T	F
			F		T

Logic Connectives (Order of Operations)

It's important to know the "order of operations" of logic connectives. Otherwise, statements would require too many parentheses \& brackets.

DOMINANCE:	CONNECTIVES:	
MOST DOMINANT	Biconditional	\longleftrightarrow
$2^{\text {nd }}$ DOMINANT	Conditional	\longrightarrow
$3^{r d}$ DOMINANT	Conjunction	\wedge
	Disjunction	\vee
LEAST DOMINANT	Negation	\sim

REMARK: Since conjunction \& disjunction has equal dominance, statements involving several of them require parentheses \& square brackets!
For example:

- $P \wedge Q \vee R$ is ambiguous! It needs to changed to one of the following:
$\star(P \wedge Q) \vee R$
$\star \quad P \wedge(Q \vee R)$
* WARNING: The above two statements have different truth tables!
- $(\sim P \vee \sim Q) \wedge \sim R$ is equivalent to $[(\sim P) \vee(\sim Q)] \wedge(\sim R)$
- $(Q \wedge \sim P) \longrightarrow \sim R$ is equivalent to $[(Q \wedge(\sim P))] \longrightarrow(\sim R)$

Truth Table involving the Conditional (Example)

WEX 3-3-1: Construct a truth table for the statement: $\quad(\sim P \longrightarrow Q) \longrightarrow \sim R$

Truth Table involving the Conditional (Example)

WEX 3-3-1: Construct a truth table for the statement: $\quad(\sim P \longrightarrow Q) \longrightarrow \sim R$

P	Q	R	$\sim P$	$\sim P \longrightarrow Q$	$\sim R$	$(\sim P \longrightarrow Q) \longrightarrow \sim R$

Truth Table involving the Conditional (Example)

WEX 3-3-1: Construct a truth table for the statement: $\quad(\sim P \longrightarrow Q) \longrightarrow \sim R$

P	Q	R	$\sim P$	$\sim P \longrightarrow Q$	$\sim R$	$(\sim P \longrightarrow Q) \longrightarrow \sim R$
T						
T						
T						
T						
F						
F						
F						
F						

Truth Table involving the Conditional (Example)

WEX 3-3-1: Construct a truth table for the statement: $\quad(\sim P \longrightarrow Q) \longrightarrow \sim R$

P	Q	R	$\sim P$	$\sim P \longrightarrow Q$	$\sim R$	$(\sim P \longrightarrow Q) \longrightarrow \sim R$
T	T					
T	T					
T	F					
T	F					
F	T					
F	T					
F	F					
F	F					

Truth Table involving the Conditional (Example)

WEX 3-3-1: Construct a truth table for the statement: $\quad(\sim P \longrightarrow Q) \longrightarrow \sim R$

P	Q	R	$\sim P$	$\sim P \longrightarrow Q$	$\sim R$	$(\sim P \longrightarrow Q) \longrightarrow \sim R$
T	T	T				
T	T	F				
T	F	T				
T	F	F				
F	T	T				
F	T	F				
F	F	T				
F	F	F				

Truth Table involving the Conditional (Example)

WEX 3-3-1: Construct a truth table for the statement: $\quad(\sim P \longrightarrow Q) \longrightarrow \sim R$

P	Q	R	$\sim P$	$\sim P \longrightarrow Q$	$\sim R$	$(\sim P \longrightarrow Q) \longrightarrow \sim R$
T	T	T	F			
T	T	F	F			
T	F	T	F			
T	F	F	F			
F	T	T	T			
F	T	F	T			
F	F	T	T			
F	F	F	T			

Truth Table involving the Conditional (Example)

WEX 3-3-1: Construct a truth table for the statement: $\quad(\sim P \longrightarrow Q) \longrightarrow \sim R$

P	Q	R	$\sim P$	$\sim P \longrightarrow Q$	$\sim R$	$(\sim P \longrightarrow Q) \longrightarrow \sim R$
T	T	T	F	T		
T	T	F	F	T		
T	F	T	F	T		
T	F	F	F	T		
F	T	T	T	T		
F	T	F	T	T		
F	F	T	T	F		
F	F	F	T	F		

Truth Table involving the Conditional (Example)

WEX 3-3-1: Construct a truth table for the statement: $\quad(\sim P \longrightarrow Q) \longrightarrow \sim R$

P	Q	R	$\sim P$	$\sim P \longrightarrow Q$	$\sim R$	$(\sim P \longrightarrow Q) \longrightarrow \sim R$
T	T	T	F	T	F	
T	T	F	F	T	T	
T	F	T	F	T	F	
T	F	F	F	T	T	
F	T	T	T	T	F	
F	T	F	T	T	T	
F	F	T	T	F	F	
F	F	F	T	F	T	

Truth Table involving the Conditional (Example)

WEX 3-3-1: Construct a truth table for the statement: $\quad(\sim P \longrightarrow Q) \longrightarrow \sim R$

P	Q	R	$\sim P$	$\sim P \longrightarrow Q$	$\sim R$	$(\sim P \longrightarrow Q) \longrightarrow \sim R$
T	T	T	F	T	F	F
T	T	F	F	T	T	T
T	F	T	F	T	F	F
T	F	F	F	T	T	T
F	T	T	T	T	F	F
F	T	F	T	T	T	T
F	F	T	T	F	F	T
F	F	F	T	F	T	T

Truth Table involving the Conditional (Example)

WEX 3-3-1: Construct a truth table for the statement: $\quad(\sim P \longrightarrow Q) \longrightarrow \sim R$

P	Q	R	$\sim P$	$\sim P \longrightarrow Q$	$\sim R$	$(\sim P \longrightarrow Q) \longrightarrow \sim R$
T	T	T	F	T	F	F
T	T	F	F	T	T	T
T	F	T	F	T	F	F
T	F	F	F	T	T	T
T	T	T	T	T	F	F
F	T	F	T	T	T	T
F	F	T	T	F	F	T
F	F	F	T	F	T	T

Truth Table involving the Biconditional (Example)

WEX 3-3-2: Construct a truth table for: $\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$

Truth Table involving the Biconditional (Example)

WEX 3-3-2: Construct a truth table for: $\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$	$P \vee \sim Q$	$\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$

Truth Table involving the Biconditional (Example)

WEX 3-3-2: Construct a truth table for: $\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$	$P \vee \sim Q$	$\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$
T						
T						
F						
F						

Truth Table involving the Biconditional (Example)

WEX 3-3-2: Construct a truth table for: $\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$	$P \vee \sim Q$	$\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$
T	T					
T	F					
F	T					
F	F					

Truth Table involving the Biconditional (Example)

WEX 3-3-2: Construct a truth table for: $\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$	$P \vee \sim Q$	$\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$
T	T	F				
T	F	T				
F	T	F				
F	F	T				

Truth Table involving the Biconditional (Example)

WEX 3-3-2: Construct a truth table for: $\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$	$P \vee \sim Q$	$\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$
T	T	F	F			
T	F	T	T			
F	T	F	F			
F	F	T	F			

Truth Table involving the Biconditional (Example)

WEX 3-3-2: Construct a truth table for: $\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$	$P \vee \sim Q$	$\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$
T	T	F	F	T		
T	F	T	T	F		
F	T	F	F	T		
F	F	T	F	T		

Truth Table involving the Biconditional (Example)

WEX 3-3-2: Construct a truth table for: $\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$	$P \vee \sim Q$	$\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$
T	T	F	F	T	T	
T	F	T	T	F	T	
F	T	F	F	T	F	
F	F	T	F	T	T	

Truth Table involving the Biconditional (Example)

WEX 3-3-2: Construct a truth table for: $\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$

P	Q	$\sim Q$	$P \wedge \sim Q$	$\sim(P \wedge \sim Q)$	$P \vee \sim Q$	$\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$
T	T	F	F	T	T	T
T	F	T	T	F	T	F
F	T	F	F	T	F	F
F	F	T	F	T	T	T

Truth Table involving the Biconditional (Example)

WEX 3-3-2: Construct a truth table for: $\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$

| P | Q | $\sim Q$ | $P \wedge \sim Q$ | $\sim(P \wedge \sim Q)$ | $P \vee \sim Q$ | $\sim(P \wedge \sim Q) \longleftrightarrow P \vee \sim Q$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | F | F | T | T | T |
| T | F | T | T | F | T | F |
| F | T | F | F | T | F | F |
| F | F | T | F | T | T | F |

More about Conditionals....

In English, conditionals can be worded various ways:

$$
\begin{gathered}
P \longrightarrow Q \\
" \text { If } P, \text { then } Q " \\
" Q \text { if } P \text { " } \\
" P \text { only if } Q \text { " } \\
" P \text { is sufficient for } Q " \\
" Q \text { is necessary for } P "
\end{gathered}
$$

Definition

(More about the Conditional)
Given the conditional $P \longrightarrow Q$,
P is sometimes known as the hypothesis (or antecedent)
Q is sometimes known as the conclusion (or consequent)

Converses, Inverses, Contrapositives of Conditionals

Definition

(Converses, Inverses, Contrapositives)

The	converse	Q is	$Q \longrightarrow P$
The	inverse	conditional $P \longrightarrow Q$ is	P
The	contrapositive	of conditional $P \longrightarrow Q$ is	$\sim Q$

Proposition

(Logical Equivalence w.r.t. Conditionals)
(a) $\sim Q \longrightarrow \sim P \Longleftrightarrow P \longrightarrow Q$
(b) $\sim P \longrightarrow \sim Q \Longleftrightarrow Q \longrightarrow P$

Converses, Inverses, Contrapositives of Conditionals

Definition

(Converses, Inverses, Contrapositives)

Th	converse	Q is	Q
The	inverse	$P \longrightarrow Q$ is	$P \longrightarrow \sim$
The	ontrapositive	f conditional $P \longrightarrow Q$ is	$\sim Q \longrightarrow \sim$

Proposition

(Logical Equivalence w.r.t. Conditionals)
(a) $\sim Q \longrightarrow \sim P \Longleftrightarrow P \longrightarrow Q$
(b) $\sim P \longrightarrow \sim Q \Longleftrightarrow Q \longrightarrow P$

PROOF:

P	Q	$\sim Q$	$\sim P$	$\sim Q \longrightarrow \sim P$	$P \longrightarrow Q$
T	T	F	F	T	T
T	F	T	F	F	F
F	T	F	T	T	T
F	F	T	T	T	T

Converses, Inverses, Contrapositives of Conditionals

Definition

(Converses, Inverses, Contrapositives)

Th	converse	Q is	Q
The	inverse	$P \longrightarrow Q$ is	$P \longrightarrow \sim$
The	ontrapositive	f conditional $P \longrightarrow Q$ is	$\sim Q \longrightarrow \sim$

Proposition

(Logical Equivalence w.r.t. Conditionals)
(a) $\sim Q \longrightarrow \sim P \Longleftrightarrow P \longrightarrow Q$
(b) $\sim P \longrightarrow \sim Q \Longleftrightarrow Q \longrightarrow P$

PROOF:

P	Q	$\sim P$	$\sim Q$	$\sim P \longrightarrow \sim Q$	$Q \longrightarrow P$
T	T	F	F	T	T
T	F	F	T	T	T
F	T	T	F	F	F
F	F	T	T	T	T

Converses, Inverses, Contrapositives of Conditionals

WEX 3-3-3: Given the statement "If roses are red, then violets are blue":
(a) Find the converse.
(b) Find the inverse.
(c) Find the contraposition.

Converses, Inverses, Contrapositives of Conditionals

WEX 3-3-3: Given the statement "If roses are red, then violets are blue":

$$
\text { Let } P \equiv \text { "Roses are red", } Q \equiv \text { "Violets are blue" }
$$

(a) Find the converse.
(b) Find the inverse.
(c) Find the contraposition.

Converses, Inverses, Contrapositives of Conditionals

WEX 3-3-3: Given the statement "If roses are red, then violets are blue":
Let $P \equiv$ "Roses are red", $\quad Q \equiv$ "Violets are blue" Then, "If roses are red, then violets are blue" $\equiv P \longrightarrow Q$
(a) Find the converse.
(b) Find the inverse.
(c) Find the contraposition.

Converses, Inverses, Contrapositives of Conditionals

WEX 3-3-3: Given the statement "If roses are red, then violets are blue":
Let $P \equiv$ "Roses are red", $Q \equiv$ "Violets are blue" Then, "If roses are red, then violets are blue" $\equiv P \longrightarrow Q$
(a) Find the converse.

$$
Q \longrightarrow P
$$

(b) Find the inverse.
$\sim P \longrightarrow \sim Q$
(c) Find the contraposition.
$\sim Q \longrightarrow \sim P$

Converses, Inverses, Contrapositives of Conditionals

WEX 3-3-3: Given the statement "If roses are red, then violets are blue":

$$
\text { Let } P \equiv \text { "Roses are red", } Q \equiv \text { "Violets are blue" }
$$

Then, "If roses are red, then violets are blue" $\equiv P \longrightarrow Q$
(a) Find the converse.

$$
Q \longrightarrow P \Longleftrightarrow \text { "If violets are blue, then roses are red" }
$$

(b) Find the inverse.
$\sim P \longrightarrow \sim Q \Longleftrightarrow$ "If roses are not red, then violets are not blue"
(c) Find the contraposition.

$$
\sim Q \longrightarrow \sim P \Longleftrightarrow \text { "If violets are not blue, then roses are not red" }
$$

Fin.

