Logic: Verifying Arguments

Contemporary Math

Josh Engwer

TTU
21 July 2015

Valid Arguments (Definition)

Arguments are prevalent in everyday life, law, math, science, etc...

Definition

(Argument)
An argument is a series of statements called premises followed by a single statement called the conclusion.

Example argument:

If I think, then I am I think	$\left(1^{\text {st }}\right.$ Premise $)$ $\left(2^{\text {nd }}\right.$ Premise $)$		
\therefore I am	(Conclusion)	$\Longleftrightarrow \frac{$	$P \longrightarrow Q$
:---		$\left(1^{\text {st }} \text { Premise }\right)$	
:---			
$\left(2^{\text {nd }} \text { Premise }\right)$	}{$\therefore Q Q$}	(Conclusion)	
:---			

Definition

(Validity of an Argument)
An argument is valid if whenever all the premises are true, then the conclusion must also be true.

REMARK: The form of an argument is paramount here, not the content!

Common Valid Arguments

Certain fundamental valid arguments occur over and over again:

- Law of Detachment:

$$
\begin{aligned}
& P \longrightarrow Q \\
& P \\
& \therefore Q
\end{aligned}
$$

- Law of Contraposition: $\begin{aligned} & P \longrightarrow Q \\ & \therefore \sim P\end{aligned}$
- Law of Syllogism:

$$
\begin{aligned}
& P \longrightarrow Q \\
& Q \longrightarrow R \\
& \therefore P \longrightarrow R
\end{aligned}
$$

- Disjunctive Syllogism:

$$
\begin{aligned}
& P \vee Q \\
& \sim P \\
& \therefore \therefore Q
\end{aligned}
$$

$$
\begin{aligned}
& P \vee Q \\
& \sim Q \\
& \hline \therefore P
\end{aligned}
$$

Common Fallacies

Definition

(Fallacy)
A fallacy is a fundamental invalid argument.

- Fallacy of the Converse: $\begin{aligned} & P \longrightarrow Q \\ & \therefore P\end{aligned}$
- Fallacy of the Inverse: $\quad \frac{\sim P}{\therefore Q}$
- Affirming a Disjunction: $\begin{aligned} & P \vee Q \\ & \frac{P}{\therefore \sim Q} \quad \frac{P \vee Q}{\therefore \sim P}\end{aligned}$

Validity of an Argument (Example)

WEX 3-4-1: (a) What is the form of the following argument?
(b) Is the argument valid?

If gasoline is expensive, then there is less traffic. Gasoline is expensive.
\therefore There is less traffic.

Validity of an Argument (Example)

WEX 3-4-1: (a) What is the form of the following argument?
(b) Is the argument valid?

If gasoline is expensive, then there is less traffic.
Gasoline is expensive.
\therefore There is less traffic.

Validity of an Argument (Example)

WEX 3-4-1: (a) What is the form of the following argument?
(b) Is the argument valid?

If gasoline is expensive, then there is less traffic.
Gasoline is expensive.
\therefore There is less traffic.

(a) The form of the argument is the Law of Detachment

Validity of an Argument (Example)

WEX 3-4-1: (a) What is the form of the following argument?
(b) Is the argument valid?

If gasoline is expensive, then there is less traffic. Gasoline is expensive.
\therefore There is less traffic.

(a) The form of the argument is the Law of Detachment
(b) Since the Law of Detachment is a valid argument, the argument is valid

Validity of an Argument (Example)

WEX 3-4-2: (a) What is the form of the following argument?
(b) Is the argument valid?

If gasoline is expensive, then there is less traffic.
There is less traffic.
\therefore Gasoline is expensive.

Validity of an Argument (Example)

WEX 3-4-2: (a) What is the form of the following argument?
(b) Is the argument valid?

If gasoline is expensive, then there is less traffic.
There is less traffic.
\therefore Gasoline is expensive.

Validity of an Argument (Example)

WEX 3-4-2: (a) What is the form of the following argument?
(b) Is the argument valid?

If gasoline is expensive, then there is less traffic.
There is less traffic.
\therefore Gasoline is expensive.

(a) The form of the argument is the Fallacy of the Converse

Validity of an Argument (Example)

WEX 3-4-2: (a) What is the form of the following argument?
(b) Is the argument valid?

If gasoline is expensive, then there is less traffic.

(a) The form of the argument is the Fallacy of the Converse
(b) Since fallacies are invalid arguments, the argument is invalid

Verifying an Argument (Example)

WEX 3-4-3: Using a truth table, is the following argument valid or invalid?

$$
\begin{aligned}
& \sim P \longrightarrow \sim Q \\
& Q \\
& \therefore P
\end{aligned}
$$

Verifying an Argument (Example)

WEX 3-4-3: Using a truth table, is the following argument valid or invalid?

$$
\begin{aligned}
& \sim P \longrightarrow \sim Q \\
& \frac{Q}{\therefore P}
\end{aligned}
$$

				PREMISES		CONCLUSION
P	Q	$\sim P$	$\sim Q$	Q	$\sim P \longrightarrow \sim Q$	P

Verifying an Argument (Example)

WEX 3-4-3: Using a truth table, is the following argument valid or invalid?

$$
\begin{aligned}
& \sim P \longrightarrow \sim Q \\
& \frac{Q}{\therefore P}
\end{aligned}
$$

			PREMISES		CONCLUSION	
P	Q	$\sim P$	$\sim Q$	Q	$\sim P \longrightarrow \sim Q$	P
T	T					
T	F					
F	T					
F	F					

Verifying an Argument (Example)

WEX 3-4-3: Using a truth table, is the following argument valid or invalid?

$$
\begin{aligned}
& \sim P \longrightarrow \sim Q \\
& \frac{Q}{\therefore P}
\end{aligned}
$$

			PREMISES		CONCLUSION	
P	Q	$\sim P$	$\sim Q$	Q	$\sim P \longrightarrow \sim Q$	P
T	T	F	F			
T	F	F	T			
F	T	T	F			
F	F	T	T			

Verifying an Argument (Example)

WEX 3-4-3: Using a truth table, is the following argument valid or invalid?

$$
\begin{aligned}
& \sim P \longrightarrow \sim Q \\
& Q \\
& \therefore P
\end{aligned}
$$

			PREMISES		CONCLUSION	
P	Q	$\sim P$	$\sim Q$	Q	$\sim P \longrightarrow \sim Q$	P
T	T	F	F	T	T	T
T	F	F	T	F	T	T
F	T	T	F	T	F	F
F	F	T	T	F	T	F

Verifying an Argument (Example)

WEX 3-4-3: Using a truth table, is the following argument valid or invalid?

$$
\begin{aligned}
& \sim P \longrightarrow \sim Q \\
& \frac{Q}{\therefore P}
\end{aligned}
$$

			PREMISES		CONCLUSION	
P	Q	$\sim P$	$\sim Q$	Q	$\sim P \longrightarrow \sim Q$	P
T	T	F	F	T	T	T
T	F	F	T	F	T	T
F	T	T	F	T	F	F
F	F	T	T	F	T	F

Since every row where the premises are all true (in blue) also has the conclusion true (in green), The argument is valid

Verifying an Argument (Example)

WEX 3-4-4: Using a truth table, is the following argument valid or invalid?

$$
\begin{aligned}
& \quad P \longrightarrow Q \\
& \sim R \longrightarrow Q \\
& \therefore P \wedge R \longrightarrow \sim Q
\end{aligned}
$$

Verifying an Argument (Example)

WEX 3-4-4: Using a truth table, is the following argument valid or invalid?

$$
\begin{aligned}
& \quad P \longrightarrow Q \\
& \sim R \longrightarrow Q \\
& \therefore P \wedge R \longrightarrow \sim Q
\end{aligned}
$$

						PREMISES		CONCLUSION
P	Q	R	$\sim Q$	$\sim R$	$P \wedge R$	$P \longrightarrow Q$	$\sim R \longrightarrow Q$	$P \wedge R \longrightarrow \sim Q$

Verifying an Argument (Example)

WEX 3-4-4: Using a truth table, is the following argument valid or invalid?

$$
\begin{aligned}
& \quad P \longrightarrow Q \\
& \sim R \longrightarrow Q \\
& \therefore P \wedge R \longrightarrow \sim Q
\end{aligned}
$$

								PREMISES			CONCLUSION
P	Q	R	$\sim Q$	$\sim R$	$P \wedge R$	$P \longrightarrow Q$	$\sim R \longrightarrow Q$	$P \wedge R \longrightarrow \sim Q$			
T	T	T									
T	T	F									
T	F	T									
T	F	F									
F	T	T									
F	T	F									
F	F	T									
F	F	F									

Verifying an Argument (Example)

WEX 3-4-4: Using a truth table, is the following argument valid or invalid?

$$
\begin{aligned}
& \quad P \longrightarrow Q \\
& \sim R \longrightarrow Q \\
& \therefore P \wedge R \longrightarrow \sim Q
\end{aligned}
$$

								PREMISES							CONCLUSION
P	Q	R	$\sim Q$	$\sim R$	$P \wedge R$	$P \longrightarrow Q$	$\sim R \longrightarrow Q$	$P \wedge R \longrightarrow \sim Q$							
T	T	T	F	F	T										
T	T	F	F	T	F										
T	F	T	T	F	T										
T	F	F	T	T	F										
F	T	T	F	F	F										
F	T	F	F	T	F										
F	F	T	T	F	F										
F	F	F	T	T	F										

Verifying an Argument (Example)

WEX 3-4-4: Using a truth table, is the following argument valid or invalid?

$$
\begin{aligned}
& \quad P \longrightarrow Q \\
& \sim R \longrightarrow Q \\
& \therefore P \wedge R \longrightarrow \sim Q
\end{aligned}
$$

$c \mid$	PREMISES			CONCLUSION				
P	Q	R	$\sim Q$	$\sim R$	$P \wedge R$	$P \longrightarrow Q$	$\sim R \longrightarrow Q$	$P \wedge R \longrightarrow \sim Q$
T	T	T	F	F	T	T	T	F
T	T	F	F	T	F	T	T	T
T	F	T	T	F	T	F	T	T
T	F	F	T	T	F	F	F	T
F	T	T	F	F	F	T	T	T
F	T	F	F	T	F	T	T	T
F	F	T	T	F	F	T	T	T
F	F	F	T	T	F	T	F	T

Verifying an Argument (Example)

WEX 3-4-4: Using a truth table, is the following argument valid or invalid?

$$
\begin{aligned}
& P \longrightarrow Q \\
& \sim R \longrightarrow Q \\
& \therefore P \wedge R \longrightarrow \sim Q
\end{aligned}
$$

$c \mid$	PREMISES			CONCLUSION				
P	Q	R	$\sim Q$	$\sim R$	$P \wedge R$	$P \longrightarrow Q$	$\sim R \longrightarrow Q$	$P \wedge R \longrightarrow \sim Q$
T	T	T	F	F	T	T	T	F
T	T	F	F	T	F	T	T	T
T	F	T	T	F	T	F	T	T
T	F	F	T	T	F	F	F	T
F	T	T	F	F	F	T	T	T
F	T	F	F	T	F	T	T	T
F	F	T	T	F	F	T	T	T
F	F	F	T	T	F	T	F	T

Since there's at least one row where the premises are all true (in blue) but the conclusion is false (in red), The argument is invalid

Fin.

